Accessibility navigation

A novel scheme for human-friendly and time-delays robust neuropredictive teleoperation

Prokopiou, P. A., Tzafestas, S. G. and Harwin, W. S. ORCID: (1999) A novel scheme for human-friendly and time-delays robust neuropredictive teleoperation. Journal of Intelligent and Robotic Systems, 25 (4). pp. 311-340. ISSN 1573-0409

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1023/A:1008126212102


A novel Neuropredictive Teleoperation (NPT) Scheme is presented. The design results from two key ideas: the exploitation of the measured or estimated neural input to the human arm or its electromyograph (EMG) as the system input and the employment of a predictor of the arm movement, based on this neural signal and an arm model, to compensate for time delays in the system. Although a multitude of such models, as well as measuring devices for the neural signals and the EMG, have been proposed, current telemanipulator research has only been considering highly simplified arm models. In the present design, the bilateral constraint that the master and slave are simultaneously compliant to each other's state (equal positions and forces) is abandoned, thus obtaining a simple to analyzesuccession of only locally controlled modules, and a robustness to time delays of up to 500 ms. The proposed designs were inspired by well established physiological evidence that the brain, rather than controlling the movement on-line, programs the arm with an action plan of a complete movement, which is then executed largely in open loop, regulated only by local reflex loops. As a model of the human arm the well-established Stark model is employed, whose mathematical representation is modified to make it suitable for an engineering application. The proposed scheme is however valid for any arm model. BIBO-stability and passivity results for a variety of local control laws are reported. Simulation results and comparisons with traditional designs also highlight the advantages of the proposed design.

Item Type:Article
Divisions:Life Sciences > School of Biological Sciences > Department of Bio-Engineering
ID Code:19019
Uncontrolled Keywords:neuropredictive teleoperation, human arm model, time-delays compensation, hypothetical neural input/electromyograph prediction, enhanced Yokokohji–Yoshikawa scheme
Publisher:Springer Verlag

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation