Accessibility navigation


Switching on a two-dimensional time-harmonic scalar wave in the presence of a diffracting edge

Hewett, D. P., Ockendon, J. R. and Allwright, D. J. (2011) Switching on a two-dimensional time-harmonic scalar wave in the presence of a diffracting edge. Wave Motion, 48 (3). pp. 197-213. ISSN 0165-2125

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.wavemoti.2010.10.005

Abstract/Summary

This paper concerns the switching on of two-dimensional time-harmonic scalar waves. We first review the switch-on problem for a point source in free space, then proceed to analyse the analogous problem for the diffraction of a plane wave by a half-line (the ‘Sommerfeld problem’), determining in both cases the conditions under which the field is well-approximated by the solution of the corresponding frequency domain problem. In both cases the rate of convergence to the frequency domain solution is found to be dependent on the strength of the singularity on the leading wavefront. In the case of plane wave diffraction at grazing incidence the frequency domain solution is immediately attained along the shadow boundary after the arrival of the leading wavefront. The case of non-grazing incidence is also considered.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
ID Code:19374
Publisher:Elsevier

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation