[1] M.J. Deniro and S. Epstein. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta. 1981, 45, 341-351.
• [2] M.J. Vander Zanden and J.B. Rasmussen. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 2001, 46, 2061–2066.
• [3] M.J. Vander Zanden and J.B. Rasmussen. Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology. 1999, 80, 1395-1404.
• [4] G. Cabana and J.B. Rasmussen. Comparison of aquatic food chains using nitrogen isotopes. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 10844-10847.
• [5] S. Hansson et al. The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology. 1997, 78, 2249-2257.
• [6] J. McClelland, W., I. Valiela, and R.H. Michener. Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnol. Oceanogr. 1997, 42, 930-937.
• [7] R.H. Carmichael, B. Annett, and I. Valiela. Nitrogen loading to Pleasant Bay, Cape Cod: application of models and stable isotopes to detect incipient nutrient enrichment of estuaries. Mar. Pollut. Bull. 2004, 48, 137-143.
• [8] A. Lorrain et al. Differential δ13C and δ15N signatures among scallop tissues: implications for ecology and physiology. J. Exp. Mar. Biol. Ecol. 2002, 275, 47-61.
• [9] B. Fry. Conservative mixing of stable isotopes across estuarine salinity gradients: A conceptual framework for monitoring watershed influences on downstream fisheries production. Estuaries and Coasts. 2002, 25, 264-271.
• [10] R.A. McKinney, J.L. Lake, M.A. Charpentier, and S. Ryba. Using mussel isotope ratios to assess anthropogenic nitrogen inputs to freshwater ecosystems. Environ. Monit. Assess. 2002, 74, 167-192.
• [11] R.A. McKinney, W.G. Nelson, M.A. Charpentier, and C. Wigand. Ribbed mussel nitrogen isotope signatures reflect nitrogen sources in coastal salt marshes. Ecol. Appl. 2001, 11, 203-214.
• [12] T.H. O'Donnell et al. Analysis of δ13C, δ15N, and δ34S in organic matter from the biominerals of modern and fossil Mercenaria spp. Org. Geochem. 2003, 34, 165-183.
• [13] S. Watanabe, M. Kodama, and M. Fukuda. Nitrogen stable isotope ratio in the manila clam, Ruditapes philippinarum, reflects eutrophication levels in tidal flats. Mar. Pollut. Bull. 2009, 58, 1447-1453.
• [14] R.H. Carmichael, T. Hattenrath, I. Valiela, and R.H. Michener. Nitrogen stable isotopes in the shell of Mercenaria mercenaria trace wastewater inputs from watersheds to estuarine ecosystems. Aquatic Biol. 2008, 4, 99-111.
• [15] C. LeBlanc, Terrestrial input to estuarine bivalves as measured by multiple stable isotopes tracers, PhD, McMaster, 1989.
• [16] B. Williams and A.G. Grottoli. Stable nitrogen and carbon isotope ([delta]15N and [delta]13C) variability in shallow tropical Pacific soft coral and black coral taxa and implications for paleoceanographic reconstructions. Geochim. Cosmochim. Acta. 2010, 74, 5280-5288.
• [17] K. Rowell, D. Dettman, and R. Dietz. Nitrogen isotopes in otoliths reconstruct ancient trophic position. Environ. Biol. Fishes. 2010, 1-11.
• [18] J.M. Vandermyde and G.W. Whitledge. Otolith δ15N Distinguishes Fish from Forested and Agricultural Streams in Southern Illinois. J. Freshw. Ecol. 2008, 23, 333-336.
• [19] R.D. Dietz, Nitrogen isotopes in bivalve shells from the Colorado River estuary: Evaluating a potential proxy for changes in riverine nutrient delivery, MSc, University of Arizona, 2008.
• [20] B. Fry. Food Web Structure on Georges Bank from Stable C, N, and S Isotopic Compositions. Limnol. Oceanogr. 1988, 33, 1182-1190.
• [21] Bouillon, Koedam, Raman, and Dehairs. Primary producers sustaining macro-invertebrate communities in intertidal mangrove forests. Oecologia. 2002, 130, 441-448.
• [22] M. Mateo, O. Serrano, L. Serrano, and R. Michener. Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia. 2008, 157, 105-115.
• [23] U. Jacob et al. Stable isotope food web studies: a case for standardized sample treatment. Mar. Ecol. Prog. Ser. 2005, 287, 251-253.
• [24] O. Serrano et al. Acid washing effect on elemental and isotopic composition of whole beach arthropods: Implications for food web studies using stable isotopes. Acta Oecol. 2008, 34, 89-96.
• [25] J.S.S. Ng, T.-C. Wai, and G.A. Williams. The effects of acidification on the stable isotope signatures of marine algae and molluscs. Mar. Chem. 2007, 103, 97-102.
• [26] K.L. Bosley and S.C. Wainright. Effects of preservatives and acidification on the stable isotope ratios (15N:14N, 13C:12C) of two species of marine animals. Can. J. Fish. Aquat. Sci. 1999, 56, 2181–2185.
• [27] J. Syväranta et al. Evaluating the utility of stable isotope analyses of archived freshwater sample materials. Hydrobiologia. 2008, 600, 121-130.
• [28] Arrington, D. Albrey, Winemiller, and O. Kirk, Preservation effects on stable isotope analysis of fish muscle, American Fisheries Society, Bethesda, 2002.
• [29] M.S. Edwards, T.F. Turner, and Z.D. Sharp. Short- and Long-Term Effects of Fixation and Preservation on Stable Isotope Values (δ13C,δ15N,δ34S) of Fluid-Preserved Museum Specimens. Copeia. 2002, 2002, 1106-1112.
• [30] H.C. Sarakinos, M.L. Johnson, and M.J. Vander Zanden. A synthesis of tissue-preservation effects on carbon and nitrogen stable isotope signatures. Can. J. Zool. 2002, 80, 381-387.
• [31] M.D. Delong and J.H. Thorp. Mollusc shell periostracum as an alternative to tissue in isotopic studies. Limnol. Oceanogr. Methods. 2009, 7, 436–441.
• [32] S. Kaehler and E.A. Pakhomov. Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms. Mar. Ecol. Prog. Ser. 2001, 219, 299-304.
• [33] S. Carabel, P. Verísimo, and J. Freire. Effects of preservatives on stable isotope analyses of four marine species. Estuar. Coast. Shelf. Sci. 2009, 82, 348-350.
• [34] D.P. Gillikin et al. Barium uptake into the shells of the common mussel (Mytilus edulis) and the potential for estuarine paleo-chemistry reconstruction. Geochim. Cosmochim. Acta. 2006, 70, 395-407.
• [35] J.K. Böhlke and T.B. Coplen, Interlaboratory comparison of reference materials for nitrogen-isotope-ratio measurements, IAEA, Vienna, 1995.
• [36] H. Qi et al. Two new organic reference materials for δ13C and δ15N measurements and a new value for the δ13C of NBS 22 oil. Rapid Commun. Mass Spectrom. 2003, 17, 2483-2487.
• [37] Y.-M. Paulet, A. Lorrain, J. Richard, and S. Pouvreau. Experimental shift in diet δ13C: A potential tool for ecophysiological studies in marine bivalves. Org. Geochem. 2006, 37, 1359-1370.
• [38] K. Fukumori et al. Bivalve tissue as a carbon and nitrogen isotope baseline indicator in coastal ecosystems. Estuar. Coast. Shelf. Sci. 2008, 79, 45-50.
• [39] R.H. Carmichael and C.J. Kovacs. Comment on Watanabe et al. (2009). Mar. Pollut. Bull. 2010, 60, 314-315.