Model-based vehicle detection and classification using orthographic approximationsSullivan, G.D., Baker, K.D., Worrall, A.D., Attwood, C.I. and Remagnino, P.R. (1996) Model-based vehicle detection and classification using orthographic approximations. In: 7th British Machine Vision Conference, 9-12th September 1996, The University of Edinburgh, Edinburgh UK. Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. Abstract/SummaryThis paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.
Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |