Accessibility navigation

Path planning of robots in noisy workspaces using learning automata

Tsoularis, A., Kambhampati, C. and Warwick, K. (1993) Path planning of robots in noisy workspaces using learning automata. In: Proceedings of the 1993 IEEE International Symposium on Intelligent Control. IEEE, pp. 560-564. ISBN 0780312066

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1109/ISIC.1993.397636


The problem of a manipulator operating in a noisy workspace and required to move from an initial fixed position P0 to a final position Pf is considered. However, Pf is corrupted by noise, giving rise to Pˆf, which may be obtained by sensors. The use of learning automata is proposed to tackle this problem. An automaton is placed at each joint of the manipulator which moves according to the action chosen by the automaton (forward, backward, stationary) at each instant. The simultaneous reward or penalty of the automata enables avoiding any inverse kinematics computations that would be necessary if the distance of each joint from the final position had to be calculated. Three variable-structure learning algorithms are used, i.e., the discretized linear reward-penalty (DLR-P, the linear reward-penalty (LR-P ) and a nonlinear scheme. Each algorithm is separately tested with two (forward, backward) and three forward, backward, stationary) actions.

Item Type:Book or Report Section
ID Code:21676
Uncontrolled Keywords:discretized linear reward-penalty, learning automata, linear reward-penalty, manipulator, noisy workspaces, nonlinear scheme, path planning, position control, robots, variable-structure learning algorithms

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation