The transcriptome of Populus in elevated CO2Taylor, G., Street, N. R., Tricker, P. J., Sjödin, A., Graham, L., Skogström, O., Calfapietra, C., Scarascia-Mugnozza, G. and Jansson, S. (2005) The transcriptome of Populus in elevated CO2. New Phytologist, 167 (1). pp. 143-154. ISSN 1469-8137 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1111/j.1469-8137.2005.01450.x Abstract/SummaryThe consequences of increasing atmospheric carbon dioxide for long-term adaptation of forest ecosystems remain uncertain, with virtually no studies undertaken at the genetic level. A global analysis using cDNA microarrays was conducted following 6 yr exposure of Populus × euramericana (clone I-214) to elevated [CO2] in a FACE (free-air CO2 enrichment) experiment.• Gene expression was sensitive to elevated [CO2] but the response depended on the developmental age of the leaves, and < 50 transcripts differed significantly between different CO2 environments. For young leaves most differentially expressed genes were upregulated in elevated [CO2], while in semimature leaves most were downregulated in elevated [CO2].• For transcripts related only to the small subunit of Rubisco, upregulation in LPI 3 and downregulation in LPI 6 leaves in elevated CO2 was confirmed by anova. Similar patterns of gene expression for young leaves were also confirmed independently across year 3 and year 6 microarray data, and using real-time RT–PCR.• This study provides the first clues to the long-term genetic expression changes that may occur during long-term plant response to elevated CO2.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |