Ω-results for Beurling's zeta function and lower bounds for the generalised Dirichlet divisor problemHilberdink, T. W. (2010) Ω-results for Beurling's zeta function and lower bounds for the generalised Dirichlet divisor problem. Journal of Number Theory, 130 (3). pp. 707-715. ISSN 0022-314X
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.jnt.2009.09.008 Abstract/SummaryIn this paper we study generalised prime systems for which the integer counting function NP(x) is asymptotically well behaved, in the sense that NP(x)=ρx+O(xβ), where ρ is a positive constant and . For such systems, the associated zeta function ζP(s) is holomorphic for . We prove that for , for any ε>0, and also for ε=0 for all such σ except possibly one value. The Dirichlet divisor problem for generalised integers concerns the size of the error term in NkP(x)−Ress=1(ζPk(s)xs/s), which is O(xθ) for some θ<1. Letting αk denote the infimum of such θ, we show that .
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |