Accessibility navigation

A stress-controlled mechanism for the intensity of very large magnitude explosive eruptions

Costa, A., Gottsmann, J., Melnik, O. and Sparks, R. S. J. (2011) A stress-controlled mechanism for the intensity of very large magnitude explosive eruptions. Earth and Planetary Science Letters, 310 (1-2). pp. 161-166. ISSN 0012-821X

Text - Accepted Version
· Please see our End User Agreement before downloading.


It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.epsl.2011.07.024


Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10^10 kg/s from shallow-seated (4–6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Environmental Systems Science Centre
ID Code:23402
Uncontrolled Keywords:large explosive eruptions; extensional stress; conduit model; linear fissure eruptions


Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation