Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of lifeDeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. ORCID: https://orcid.org/0000-0001-6828-3543 and Brown, J. H. (2010) Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proceedings of the National Academy of Sciences of the United States of America, 107 (29). pp. 12941-12945. ISSN 0027-8424 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1073/pnas.1007783107 Abstract/SummaryThe diversification of life involved enormous increases in size and complexity. The evolutionary transitions from prokaryotes to unicellular eukaryotes to metazoans were accompanied by major innovations inmetabolicdesign.Hereweshowthat thescalingsofmetabolic rate, population growth rate, and production efficiency with body size have changed across the evolutionary transitions.Metabolic rate scales with body mass superlinearly in prokaryotes, linearly in protists, and sublinearly inmetazoans, so Kleiber’s 3/4 power scaling law does not apply universally across organisms. The scaling ofmaximum population growth rate shifts from positive in prokaryotes to negative in protists and metazoans, and the efficiency of production declines across these groups.Major changes inmetabolic processes duringtheearlyevolutionof life overcameexistingconstraints, exploited new opportunities, and imposed new constraints. The 3.5 billion year history of life on earth was characterized by
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |