Social networks: evolving graphs with memory dependent edgesGrindrod, P. and Parsons, M. (2011) Social networks: evolving graphs with memory dependent edges. Physica A, 390 (2. pp. 3970-3981.
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.physa.2011.06.015 Abstract/SummaryThe plethora, and mass take up, of digital communication tech- nologies has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the ex- istence or otherwise of certain infinite products and series involving age dependent model parameters. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |