A robust controller design method for feedback substitution schemes using genetic algorithmsTrujillo, M. M., Hadjiloucas, S. ORCID: https://orcid.org/0000-0003-2380-6114 and Becerra, V. (2011) A robust controller design method for feedback substitution schemes using genetic algorithms. Journal of Physics: Conference Series, 307 (1). 012040. ISSN 1742-6596
It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1088/1742-6596/307/1/012040 Abstract/SummaryControllers for feedback substitution schemes demonstrate a trade-off between noise power gain and normalized response time. Using as an example the design of a controller for a radiometric transduction process subjected to arbitrary noise power gain and robustness constraints, a Pareto-front of optimal controller solutions fulfilling a range of time-domain design objectives can be derived. In this work, we consider designs using a loop shaping design procedure (LSDP). The approach uses linear matrix inequalities to specify a range of objectives and a genetic algorithm (GA) to perform a multi-objective optimization for the controller weights (MOGA). A clonal selection algorithm is used to further provide a directed search of the GA towards the Pareto front. We demonstrate that with the proposed methodology, it is possible to design higher order controllers with superior performance in terms of response time, noise power gain and robustness.
Download Statistics DownloadsDownloads per month over past year Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |