Accessibility navigation

A model-based PID controller for Hammerstein systems using B-spline neural networks

Hong, X. ORCID:, Iplikci, S., Chen, S. and Warwick, K. (2014) A model-based PID controller for Hammerstein systems using B-spline neural networks. International Journal of Adaptive Control and Signal Processing, 28 (3-5). pp. 412-428. ISSN 0890-6327

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1002/acs.2293


In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.

Item Type:Article
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
ID Code:28180
Uncontrolled Keywords:B-spline neural network; de Boor algorithm; Hammerstein model; PID controller; adaptive control; multistep ahead prediction; system identification

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation