Accessibility navigation

Pocket data mining: towards collaborative data mining in mobile computing environments

Stahl, F. ORCID:, Gaber, M. M., Bramer, M. and Yu, P. S. (2010) Pocket data mining: towards collaborative data mining in mobile computing environments. In: Proc. ICTAI 2010, the 22nd IEEE Int. Conf. on Tools with Artificial Intelligence. IEEE, pp. 323-330. ISBN 9781424488179

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1109/ICTAI.2010.118


Pocket Data Mining (PDM) is our new term describing collaborative mining of streaming data in mobile and distributed computing environments. With sheer amounts of data streams are now available for subscription on our smart mobile phones, the potential of using this data for decision making using data stream mining techniques has now been achievable owing to the increasing power of these handheld devices. Wireless communication among these devices using Bluetooth and WiFi technologies has opened the door wide for collaborative mining among the mobile devices within the same range that are running data mining techniques targeting the same application. This paper proposes a new architecture that we have prototyped for realizing the significant applications in this area. We have proposed using mobile software agents in this application for several reasons. Most importantly the autonomic intelligent behaviour of the agent technology has been the driving force for using it in this application. Other efficiency reasons are discussed in details in this paper. Experimental results showing the feasibility of the proposed architecture are presented and discussed.

Item Type:Book or Report Section
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Computer Science
ID Code:30149

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation