[1] J. C. G. Lesurf, Millimeter-Wave Optics, Devices and Systems, A. Hilger,
Ed. New York: IoP Publication, 1990.
[2] P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasi-Optical
Propagation and Applications. Piscataway, NJ: IEEE Press, 1997.
[3] R. J. Wylde, “Millimetre-wave Gaussian beam-mode optics and corrugated
feed horns,” IEE Proc. H, Microw., Opt. Antennas, vol. 131, no. 4,
pp. 258–262, Aug. 1984.
[4] R. J.Wylde and D. H. Martin, “Gaussian beam-mode analysis and phasecenters
of corrugated feed horns,” IEEE Trans. Microw. Theory Tech.,
vol. 41, no. 10, pp. 1691–1699, Oct. 1993.
[5] J. A. Murphy, “Phase centers of horn antennas using Gaussian beam
mode analysis,” IEEE Trans. Antennas Propagat., vol. 38, no. 8, pp.
1306–1310, Aug. 1990.
[6] S. Withington and J. A. Murphy, “Analysis of diagonal horns through
Gaussian–Hermite modes,” IEEE Trans. Antennas Propagat., vol. 40,
no. 2, pp. 198–206, Feb. 1992.
[7] J. A. Murphy and R. Padman, “Radiation patterns of few-moded horns
and condensing lightpipes,” Infr. Phys., vol. 31, no. 3, pp. 291–299,
1991.
[8] P. A. S. Cruickshank, D. R. Bolton, D. A. Robertson, R. J. Wylde, and
G. M. Smith, “Reducing standing waves in quasi-optical systems by
optimal feed-horn design,” in Proc. Joint 32nd Int. Conf. Inf. Millim.
Waves, Sep. 2007, pp. 941–942.
[9] J. W. Digby, C. E. McIntosh, G. M. Parkhurst, B. M. Towlson, S.
Hadjiloucas, J.W. Bowen, J. M. Chamberlain, R. D. Pollard, R. E. Miles,
D. P. Steenson, L. S. Karatzas, N. J. Cronin, and S. R. Davies, “Fabrication
and characterisation of micro-machined rectangular waveguide
components for use at millimetre wave and terahertz frequencies,” IEEE
Trans. Microw. Theory Tech., vol. 48, no. 8, pp. 1293–1303, Aug.
2000.
[10] J. W. Bowen, S. Hadjiloucas, B. M. Towlson, L. S. Karatzas, S. T. G.
Wootton, N. J. Cronin, S. R. Davies, C. E. Collins, J. M. Chamberlain,
R. E. Miles, and R. D. Pollard, “Micro-machined waveguide antennas
for 1.6 THz,” Electron. Lett., vol. 42, no. 15, pp. 842–843, Aug.
2006.
[11] J. Tuovinen, A. Lehto, and A. Räisänen, “Phase measurements of
millimeter wave antennas at 105–190 GHz with a novel differential
phase method,” IEE Proc. H, Microw., Antennas Propagat., vol. 138,
no. 2, pp. 114–120, Apr. 1991.
[12] A. Lehto, J. Tuovinen, O. Boric, and A. Räisänen, “Accurate millimeter
wave antenna phase pattern measurements using the differential phase
method with three power meters,” IEEE Trans. Antennas Propagat.,
vol. 40, no. 7, pp. 851–853, Jul. 1992
[13] J. Mallat, A. Lehto, and J. Tuovinen, “Antenna phase pattern measurements
at millimeter wave frequencies using the differential phase method
with only one power meter,” Int. J. Infr. Millim. Waves, vol. 15, no. 9,
pp. 1497–1506, Sep. 1994.
[14] H.-W. Hübers, G. W. Schwaab, and H. P. Rösser, “Video detection and
mixing performance of GaAs Schottky-barrier diodes at 30 THz and
comparison with metal-insulator-metal diodes,” J. Appl. Phys., vol. 75,
no. 8, pp. 4243–4248, Apr. 1994.
[15] E. Michael, F. Lewen, R. Gendriesch, J. Stutzki, and G. Winnewisser,
“Frequency lock of an optically pumped FIR ring laser at 803 and
1626 GHz,” Int. J. Inf. Millim. Waves, vol. 20, no. 6, pp. 1073–1083,
1999.
[16] H. P. Rösser, “Heterodyne spectroscopy for submillimeter and FIR
wavelengths from 100 m to 50 m,” Infr. Phys., vol. 32, no. 5, pp. 385–
407, 1991.
[17] T. W. Crowe, R. J. Mattauch, H. P. Rösser, W. L. Bishop, W. C. B. Peatman,
and X. Liu, “GaAs Schottky diodes for THz mixing applications,”
Proc. IEEE, vol. 80, no. 11, pp. 1827–1841, Nov. 1992.
[18] H. P. Rösser, H.-W. Hübers, E. Bründermann, and M. F. Kimmitt,
“Observation of mesoscopic effects in Schottky diodes at 300 K when
used as mixers at THz frequencies,” Semicond. Sci. Technol., vol. 11,
no. 9, pp. 1328–1332, Sep. 1996.
[19] T.W. Crowe, W. L. Bishop, and D.W. Porterfield, “Opening the terahertz
window with integrated diode circuits,” IEEE J. Solid-State Circuits,
vol. 40, no. 10, pp. 2104–2106, Oct. 2005.
[20] B. Thomas, S. Rea, B. Moyna, B. Alderman, and D. Matheson, “A 320–
360 GHz subharmonically pumped image rejection mixer using planar
Schottky diodes,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2,
pp. 101–103, Feb. 2009.
[21] B. Alderman, M. Henry, H. Sanghera, H. Wang, S. Rea, B. Ellison,
and P. de Maagt, “Schottky diode technology at Rutherford Appleton
Laboratory,” in Proc. IEEE Int. Conf. Microw. Technol. Comput. Electromagn.,
May 2011, pp. 4–6.
[22] L. M. Mataresse and K. M. Evenson, “Improved coupling of infrared
whisker diodes by use of antenna theory,” Appl. Phys. Lett., vol. 17,
no. 1, pp. 8–10, 1970.
[23] D. B. Rutledge, S. E. Schwarz, and A. T. Adams, “Infrared and
submillimetre antennas,” Infr. Phys., vol. 18, nos. 5–6, pp. 713–729,
Dec. 1978.
[24] B. Vowinkel, “The main beam efficiency of corner cube reflectors,” Infr.
Phys., vol. 7, no. 1, pp. 155–169, Jan. 1986.
[25] H. Kraütle, E. Sauter, and G. V. Schultz, “Antenna characteristics of
whisker diodes used as submillimeter receivers,” Infr. Phys., vol. 17,
no. 6, pp. 477–483, Nov. 1977.
[26] E. N. Grossman, “The coupling of sub-millimeter corner-cube antennas
to Gaussian beams,” Infr. Phys., vol. 29, no. 6, pp. 875–885, Jul.
1989.
[27] R. W. Beatty, G. F. Engen, and W. J. Anson, “Measurement of reflection
and losses of waveguide joints and connectors using microwave reflectometer
techniques,” IRE Trans. Instrum., vol. 9, no. 2, pp. 219–226,
Sep. 1960.
[28] L. C. Oldfield, J. P. Die, and E. J. Griffin, “A multistate reflectometer,”
IEEE Trans. Instrum. Meas., vol. 34, no. 2, pp. 198–201, Jun.
1985.
[29] S. Hadjiloucas and J. W. Bowen, “Precision of quasi-optical nullbalanced
bridge techniques for transmission and reflection coefficient
measurements,” Rev. Sci. Instrum., vol. 70, no. 1, pp. 213–219, Jan.
1999.
[30] S. Hadjiloucas, G. C. Walker, and J. W. Bowen, “A 1-port de-embedding
technique for the quasi-optical characterization of integrated components,”
IEEE Sensors J., to be published.
[31] H.-W. Hübers and H. P. Rösser, “Temperature dependence of the barrier
height of Pt/n-GaAs Schottky diodes,” J. Appl. Phys., vol. 84, no. 9, pp.
5326–5330, Jul. 1998.
[32] H. P. Rösser and H.-W. Hübers, “Schottky barrier devices for THz applications,”
in New Directions in Terahertz Technology, J. M. Chamberlain
and R. E. Miles, Eds. Norwood, MA: Kluwer, 1997, pp. 119–125.
[33] H. P. Rösser, H.-W. Hübers, T. W. Crowe, and W. C. B. Peatman,
“Nanostructure GaAs Schottky diodes for far-infrared heterodyne
receivers,” Infr. Phys., vol. 35, nos. 2–3, pp. 451–462, 1994.
[34] R. Titz, B. Auel, W. Esch, H. P. Rösser, and G. Schwaab, “Antenna
measurements of open structure Schottky mixers and determination of
optical elements for a heterodyne system at 184, 214, and 287 m,” Infr.
Phys., vol. 30, no. 5, pp. 435–441, 1990
[35] R. Titz, “Untersuchung von GaAs Schottky-dioden mit submillimeterlasern,”
Ph.D. thesis, Dept. Eelctr. Eng., Univ. Bonn, Bonn, Germany,
May 1991.
[36] G. M. Rebeiz, “Millimeter-wave and terahertz integrated circuit antennas,”
Proc. IEEE, vol. 80, no. 11, pp. 1748–1770, Nov. 1992.
[37] T. H. Büttgenbach, “An improved solution for integrated array optics
in quasi-optical mm and submm receivers: The hybrid antenna,”
IEEE Microw. Theory Tech., vol. 41, no. 10, pp. 1750–1761, Oct.
1993.
[38] T. H. Büttgenbach, R. E. Miller, M. J. Wengler, D. M. Watson, and
T. G. Phillips, “A broad-band low-noise SIS receiver for submillimeter
astronomy,” IEEE Microw. Theory Tech., vol. 36, no. 12, pp. 1720–1726,
Dec. 1988.
[39] Y. P. Gousev, A. D. Semenov, E. V. Pechen, A. V. Varlashkin,
R. S. Nebosis, and K. F. Renk, “Coupling of terahertz radiation to
a high-Tc superconducting hot-electron bolometer mixer,” Appl. Phys.
Lett., vol. 69, no. 5, pp. 1–3, May 1996.
[40] D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas
on extended hemispherical and elliptical silicon dielectric lenses,” IEEE
Microw. Theory Tech., vol. 41, no. 10, pp. 1738–1749, Oct. 1993.
[41] A. D. Semenov, H.-W. Hübers, J. Schubert, G. N. Golt‘tsman,
A. I. Elantiev, B. M. Voronov, and E. M. Gershenzon, “Design and
performance of the lattice-cooled hot-electron terahertz mixer,” J. Appl.
Phys., vol. 88, no. 11, pp. 6758–6768, Sep. 2000.
[42] H.-W. Hübers, J. Schubert, A. Semenov, G. Gol’tsman, B. Voronov,
E. Gershenzon, and G. W. Scwaab, “NbN phonon-cooled hot-electron
bolometer as a mixer for THz heterodyne receivers,” Proc. SPIE,
vol. 3828, pp. 410–416, Sep. 1999.
[43] H.-W. Hübers, J. Schubert, A. Krabbe, M. Birk, G. Wagner, A. Semenov,
G. Gol’tsman, B. Voronov, and E. Gershenzon, “Parylene anti-reflection
coating of a quasi-optical hot-electron bolometric mixer at terahertz
frequencies,” Infr. Phys. Technol., vol. 42, no. 1, pp. 41–47, 2000.
[44] J. A. Beunen, A. E. Costley, G. F. Neill, C. L. Mok, T. J. Parker,
and G. Tait, “Performance of free-standing grids wound from l0-μmdiameter
tungsten wire at submillimeter wavelengths: Computation and
measurement,” J. Opt. Soc. Amer., vol. 71, no. 2, pp. 184–188, 1981.
[45] A. G. Murray, A. M. Flett, G. Murray, and P. A. R. Ade, “High-efficiency
half-wave plates for submillimeter polarimetry,” Infr. Phys., vol. 33,
no. 2, pp. 113–125, 1992.
[46] M. Shur, “Terahertz electronics for sensing applications,” in Proc. IEEE
Sensors Conf., Oct. 2011, pp. 40–43.
[47] P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE
Trans. Microw. Theory Tech., vol. 52, no. 10, pp. 2438–2447, Oct. 2004.
[48] T. W. Crowe, J. L. Hesler, R. M. Weikle, and S. H. Jones, “GaAs devices
and circuits for terahertz applications,” Infr. Phys., vol. 40, no. 3, pp.
175–189, 1999.
[49] K. Victor, H. G. Roskos, and C. Waschke, “Efficiency of submillimeterwave
generation and amplification by coherent wave-packet oscillations
in semiconductor structures,” JOSA B, vol. 11, no. 12, pp. 2470–2479,
Dec. 1994.
[50] Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J. B. Stark, Q.
Wu, X. C. Zhang, and J. F. Federici, “Coherent terahertz radiation
detection: Direct comparison between free-space electro-optic sampling
and antenna detection,” Appl. Phys. Lett., vol. 73, no. 4, pp. 444–446,
Jul. 1998.
[51] S. Withington, “Terahertz astronomical telescopes and instrumentation,”
Phil. Trans. Royal Soc., vol. 362, no. 1815, pp. 395–402, Feb.
2004.
[52] W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz
radiation,” Rep. Progr. Phys., vol. 70, no. 8, pp. 1325–1379, Jul.
2007.
[53] J. A. Murphy and A. Egan, “Examples of Fresnel diffraction using
Gaussian modes,” Eur. J. Phys., vol. 14, no. 3, pp. 121–127, May
1993.
[54] J. A. Murphy, S. Whithington, and A. Egan, “Mode conversion at diffracting
apertures in millimeter and submillimeter wave optical systems,”
IEEE Trans. Microw. Theory Tech., vol. 41, no. 10, pp. 1700–1702, Oct.
1993.
[55] M. P. DeLisio and R. A. York, “Quasi-optical and spatial power
combining,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 929–
936, Mar. 2002.
[56] A. Dreyhaupt, S. Winnerl, M. Helm, and T. Dekorsy, “Optimum
excitation conditions for the generation of high-electric-field terahertz
radiation from an oscillator-driven photoconductive device,” Opt. Lett.,
vol. 31, no. 10, pp. 1546–1548, May 2006.
[57] W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and
D. M. Mittleman, “A spatial light modulator for terahertz beams,”
Appl. Phys. Lett., vol. 94, no. 21, pp. 213511-1–213511-3, May
2009.
[58] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.,
vol. 85, no. 18, pp. 3966–3969, Oct. 2000.
[59] I. Gil, J. Garcia-Garcia, J. Bonache, F. Martin, M. Sorolla, and R. Marques,
“Varactor-loaded split ring resonators for tunable notch filters at
microwave frequencies,” Electron. Lett., vol. 40, no. 21, pp. 1347–1348,
Oct. 2004.
[60] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry,
A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at
microwave frequencies,” Science, vol. 314, no. 5801, pp. 977–980, Oct.
2006.
[61] H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and
R. D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444,
pp. 597–600, Nov. 2006.
[62] H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt,
D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration
of frequency-agile terahertz metamaterials,” Nature Photon., vol. 2, pp.
295–298 Apr. 2008.
[63] D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt,
S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from
metamaterials with embedded high electron mobility transistors,” Opt.
Exp., vol. 19, no. 10, pp. 9968–9975, Jul. 2011.
[64] Y. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control
of slow light on a chip with photonic crystal waveguides,” Nature,
vol. 438, pp. 65–69, Nov. 2005.
[65] R. J. Blaikie, “Perfect imaging without refraction?” New J. Phys.,
vol. 13, pp. 125006-1–125006-5, Dec. 2011.
[66] Y. G. Ma, S. Sahebdivan, C. K. Ong, T. Tyc, and U. Leonhardt,
“Evidence for subwavelength imaging with positive refraction,” New
J. Phys., vol. 13, pp. 033016-1–033016-4, Mar. 2011.
[67] G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the
diffraction limit with far-field time reversal,” Science, vol. 315, no. 5815,
pp. 1120–1122, Feb. 2007.
[68] P. D. Ruiz, J. M. Huntley, and A. Maranon, “Tilt scanning interferometry:
A novel technique for mapping structure and three-dimensional
displacement fields within optically scattering media,” Proc. Royal Soc.
A, vol. 462, no. 2072, pp. 2481–2502, Feb. 2007.
[69] B. S. H. Burlison, P. D. Ruiz, and J. M. Huntley, “Evaluation of the
performance of tilt scanning interferometry for tomographic imaging
and profilometry,” Opt. Commun., vol. 285, no. 7, pp. 1654–1661, Apr.
2012.