[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans.
Telecommun., vol. 10, no. 6, pp. 585–595, 1999.
[2] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communication: performance criterion and code
construction,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 744–765,
1998.
[3] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block
codes from orthogonal designs,” IEEE Trans. Inf. Theory, vol. 45, no. 5,
pp. 1456–1467, 1999.
[4] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, 2004.
[5] P. Mitran, H. Ochiai, and V. Tarokh, “Space-time diversity enhancements
using collaborative communications,” IEEE Trans. Inf. Theory, vol. 51,
no. 6, pp. 2041–2057, 2005.
[6] J. N. Laneman and G. W. Wornell, “Distributed space-time-coded
protocols for exploiting cooperative diversity in wireless networks,”
IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2415–2425, 2003.
[7] Y. Jing and B. Hassibi, “Distributed space-time coding in wireless relay
networks,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3524–
3536, 2006.
[8] S. Wei, D. L. Goeckel, and M. C. Valenti, “Asynchronous cooperative
diversity,” IEEE Trans. Wireless Commun., vol. 5, no. 6, pp. 1547–1557,
2006.
[9] Y. Li and X.-G. Xia, “Full diversity distributed space-time trellis codes
for asynchronous cooperative communications,” in Proc. 2005 Int. Symp.
Inf. Theory, pp. 911–915.
[10] ——, “A family of distributed space-time trellis codes with asynchronous
cooperative diversity,” IEEE Trans. Commun., vol. 55, no. 4,
pp. 790–800, 2007.
[11] X. Guo and X.-G. Xia, “Distributed linear convolutive space-time codes
for asynchronous cooperative communication networks,” IEEE Trans.
Wireless Commun., vol. 7, no. 5, pp. 1857–1861, 2008.
[12] A. R. Hammons Jr., “Algebraic space-time codes for quasi-synchronous
cooperative diversity,” in Proc. 2005 Int. Conf. Wireless Netw., Commun.
Mobile Computing, vol. 1, pp. 11–15.
[13] M. O. Damen and A. R. Hammons, “Delay-tolerant distributed-TAST
codes for cooperative diversity,” IEEE Trans. Inf. Theory, vol. 53, no. 10,
pp. 3755–3773, 2007.
[14] M. Torbatian and M. O. Damen, “On the design of delay-tolerant distributed
space-time codes with minimum length,” IEEE Trans. Wireless
Commun., vol. 8, no. 2, pp. 931–939, 2009.
[15] M. Sarkiss, R. B. Othman, M. O. Damen, and J. C. Belfiore, “Construction
of new delay-tolerant space-time codes,” in Proc. 2010 Int. Symp.
Pers. Indoor Mobile Radio Commun., pp. 379–384.
[16] B. Hassibi and B. M. Hochwald, “High-rate codes that are linear in space
and time,” IEEE Trans. Inf. Theory, vol. 48, no. 7, pp. 1804–1824, 2002.
[17] R. W. Heath Jr. and A. J. Paulraj, “Linear dispersion codes for MIMO
systems based on frame theory,” IEEE Trans. Signal Process., vol. 50,
no. 10, pp. 2429–2441, 2002.
[18] R. H. Gohary and T. N. Davidson, “Design of linear dispersion codes:
asymptotic guidelines and their implementation,” IEEE Trans. Wireless
Commun., vol. 4, no. 6, pp. 2892–2906, 2005.
[19] X. Wang, V. Krishnamurthy, and J. Wang, “Stochastic gradient algorithms
for design of minimum error-rate linear dispersion codes in
MIMO wireless systems,” IEEE Trans. Signal Process., vol. 54, no. 4,
pp. 1242–1255, 2006.
[20] H. X. Nguyen, H. H. Nguyen, and T. Le-Ngoc, “Optimization of linear
dispersion codes for wireless relay networks,” IEEE Signal Process.
Lett., vol. 16, no. 5, pp. 366–369, 2009.
[21] M. Jiang and L. Hanzo, “Unitary linear dispersion code design and
optimization for MIMO communication systems,” IEEE Signal Process.
Lett., vol. 17, no. 5, pp. 497–500, 2010.
[22] J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation,
Simulation, and Control. John Wiley and Sons, 2003.
[23] F.-C. Zheng, A.-G. Burr, and S. Olafsson, “Near-optimum detection for
distributed space-time block coding under imperfect synchronization,”
IEEE Trans. Commun., vol. 56, no. 11, pp. 1795–1799, 2008.
[24] ——, “Signal detection for distributed space-time block coding: 4 relay
nodes under quasi-synchronisation,” IEEE Trans. Commun., vol. 57,
no. 5, pp. 1250–1255, 2009.
[25] M. Vu and A. Paulraj, “On the capacity of MIMO wireless channels
with dynamic CSIT,” IEEE J. Sel. Areas Commun., vol. 25, no. 7, pp.
1269–1283, 2007.
[26] S. Kirkpatrick, “Optimization by simulated annealing: quantitative studies,”
J. Statistical Physics, vol. 34, no. 5, pp. 975–986, 1984.
[27] H. J. Kushner, “Asymptotic global behavior for stochastic approximation
and diffusions with slowly decreasing noise effects: global minimization
via Monte Carlo,” SIAM J. Applied Mathematics, vol. 47, no. 1, pp.
169–185, 1987.
[28] M. O. Damen, A. Chkeif, and J. C. Belfiore, “Lattice code decoder for
space-time codes,” IEEE Commun. Lett., vol. 4, no. 5, pp. 161–163,
2002.
[29] J. Jaldén and B. Ottersten, “On the complexity of sphere decoding in
digital communications,” IEEE Trans. Signal Process., vol. 53, no. 4,
pp. 1474–1484, 2005.
[30] M. O. Damen, “Joint coding/decoding in a multiple access system,
application to mobile communications,” Ph.D. thesis, ENST de Paris,
France, 1999.
[31] K. B. Petersen and M. S. Pedersen, “The matrix cookbook, 2008.”
Available: http://matrixcookbook.com