## Approximate solution of second kind integral equations on infinite cylindrical surfaces
Peplow, A. T. and Chandler-Wilde, S. N. ORCID: https://orcid.org/0000-0003-0578-1283
(1995)
Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1137/0732026 ## Abstract/SummaryThe paper considers second kind integral equations of the form $\phi (x) = g(x) + \int_S {k(x,y)} \phi (y)ds(y)$ (abbreviated $\phi = g + K\phi $), in which S is an infinite cylindrical surface of arbitrary smooth cross section. The “truncated equation” (abbreviated $\phi _a = E_a g + K_a \phi _a $), obtained by replacing S by $S_a $, a closed bounded surface of class $C^2 $, the boundary of a section of the interior of S of length $2a$, is also discussed. Conditions on k are obtained (in particular, implying that K commutes with the operation of translation in the direction of the cylinder axis) which ensure that $I - K$ is invertible, that $I - K_a $ is invertible and $(I - K_a )^{ - 1} $ is uniformly bounded for all sufficiently large a, and that $\phi _a $ converges to $\phi $ in an appropriate sense as $a \to \infty $. Uniform stability and convergence results for a piecewise constant boundary element collocation method for the truncated equations are also obtained. A boundary integral equation, which models three-dimensional acoustic scattering from an infinite rigid cylinder, illustrates the application of the above results to prove existence of solution (of the integral equation and the corresponding boundary value problem) and convergence of a particular collocation method.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |