A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems
Kennedy, C.M., Lonsdorf, E., Neel, M.C., Williams, N.M., Ricketts, T.H., Winfree, R., Bommarco, R., Brittain, C., Burley, A.L., Cariveau, D., Carvalheiro, L.G., Chacoff, N.P., Cunningham, S.A., Danforth, B.N., Dudenhöffer, J.H., Elle, E., Gaines, H.R., Gratton, C., Garibaldi, L.A., Holzschuh, A. et al, Isaacs, R., Javorek, S.K., Jha, S., Klein, A.M., Krewenka, K., Mandelik, Y., Mayfield, M.M., Morandin, L., Neame, L.A., Otieno, M., Park, M., Potts, S. ORCID: https://orcid.org/0000-0002-2045-980X, Rundlöf, M., Saez, A., Steffan-Dewenter, I., Taki, H., Viana, B.F., Westphal, C., Wilson, J.K., Greenleaf, S.S. and Kremen, C.
(2013)
A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems.
Ecology Letters, 16 (5).
pp. 584-599.
ISSN 1461-0248
Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1111/ele.12082 Abstract/SummaryBees provide essential pollination services that are potentially affected both by local farm management and
the surrounding landscape. To better understand these different factors, we modelled the relative effects of
landscape composition (nesting and floral resources within foraging distances), landscape configuration
(patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional
and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop
systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes
comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited
most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee
responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both
the maintenance of high-quality habitats around farms and on local management practices that may offset
impacts of intensive monoculture agriculture. Date Deposited: | 26 Jul 2013 09:44 | Date item deposited into CentAUR |
---|
Last Modified: | 13 Nov 2024 02:23 | Date item last modified |
---|
Aizen, M.A., Garibaldi, L.A., Cunningham, S.A. & Klein, A.M. (2008). Longterm
global trends in crop yield and production reveal no current pollination
shortage but increasing pollinator dependency. Curr. Biol., 18, 1572–1575.
Barton, K. (2011). MuMIn: multi-model inference. R package version 1.0.0.
Available at: http://CRAN.R-project.org/package=MuMIn.
Batary, P., Baldi, A., Kleijn, D. & Tscharntke, T. (2011). Landscape-moderated
biodiversity effects of agri-environmental management: a meta-analysis. Proc.
R. Soc. Biol. Sci., 278, 1894–1902.
Bates, D., Maechler, M. and Bolker, B. (2011). lme4: linear mixed-effects models
using S4 classes. R Package Version 0.999375-39. Available at: http://CRAN.Rproject.
org/package=lme4.
Brittain, C.A., Vighi, M., Bommarco, R., Settele, J. & Potts, S.G. (2010). Impacts
of a pesticide on pollinator species richness at different spatial scales. Basic
Appl. Ecol., 11, 106–115.
Brosi, B.J., Armsworth, P.R. & Daily, G.C. (2008). Optimal design of agricultural
landscapes for pollination services. Conserv. Lett., 1, 27–36.
Burnham, K.P. & Anderson, D.R. (2002). Model Selection and Multimodel Inference: A
Practical Information-Theoretic Approach, 2nd edn.. Springer Science + Business
Media, LLC., Fort Collins, CO.
Carr�e, G., Roche, P., Chifflet, R., Morison, N., Bommarco, R., Harrison-Crips, J.
et al. (2009). Landscape context and habitat type as drivers of bee diversity in
European annual crops Agriculture. Ecosyst. Environ., 133, 40–47.
Concepci�on, E.D., Diaz, M., Kleijn, D., B�aldi, A., Bat�ary, P., Clough, Y. et al.
(2012). Interactive effects of landscape context constrain the effectiveness of
local agri-environmental management. J. Appl. Ecol., 49, 695–705.
Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annu. Rev.
Ecol. Evol. Syst., 34, 487–515.
Gabriel, D., Sait, S.M., Hodgson, J.A., Schmutz, U., Kunin, W.E. & Benton,
T.G. (2010). Scale matters: the impact of organic farming on biodiversity at
different spatial scales. Ecol. Lett., 13, 858–869.
Garibaldi, L.A., Steffan-Dewenter, I., Kremen, C., Morales, J.M., Bommarco, R.,
Cunningham, S.A. et al. (2011). Stability of pollination services decreases with
isolation from natural areas despite honey bee visits. Ecol. Lett., 14, 1062–1072.
Gelman, A. & Hill, J.K. (2007). Data Analysis Using Regression and Multilevel/
Hierarchical Models. Cambridge University Press, Cambridge, UK.
Greenleaf, S., Williams, N., Winfree, R. & Kremen, C. (2007). Bee foraging
ranges and their relationships to body size. Oecologia, 153, 589–596.
Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. (2008). Agricultural
landscapes with organic crops support higher pollinator diversity. Oikos, 117,
354–361.
Kearns, C.A., Inouye, D.W. & Waser, N.M. (1998). Endangered mutualisms:
the conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst., 29,
83–112.
Klein, A.M., Vaissiere, B.E., Cane, J.H., Steffan-Dewenter, I., Cunningham, S.A.,
Kremen, C. et al. (2007). Importance of pollinators in changing landscapes for
world crops. Proc. R. Soc., 274, 303–313.
Klein, A.M., Mueller, C.M., Hoehn, P. & Kremen, C. (2009). Understanding the
role of species richness for pollination services. In: Biodiversity, Ecosystem
Functioning, and Human Wellbeing: An Ecological and Economic Perspective (eds
Bunker, D., Hector, A., Loreau, M., Perrings, C. & Naeem, S.). Oxford
University Press, Oxford, pp. 195–208.
Kremen, C. & Miles, A. (2012). Ecosystem services in biologically diversified
versus conventional farming systems: Benefits, externalities, and trade-offs.
Ecology and Society, 17, art. 40. DOI: 10.5751/ES-05035-170440.
Kremen, C., Williams, N.M. & Thorp, R.W. (2002). Crop pollination from native
bees at risk from agricultural intensification. Proc. Natl Acad. Sci., 99, 16812–16816.
Kremen, C., Williams, N.M., Bugg, R.L., Fay, J.P. & Thorp, R.W. (2004). The
area requirements of an ecosystem service: crop pollination by native bee
communities in California. Ecol. Lett., 7, 1109–1119.
Kremen, C., Williams, N.M., Aizen, M.A., Gemmill-Herren, B., LeBuhn, G.,
Minckley, R. et al. (2007). Pollination and other ecosystem services produced
by mobile organisms: a conceptual framework for the effects of land-use
change. Ecol. Lett., 10, 299–314.
Lonsdorf, E., Kremen, C., Ricketts, T., Winfree, R., Williams, N. & Greenleaf, S.
(2009). Modelling pollination services across agricultural landscapes. Ann. Bot.,
103, 1589–1600.
McGarigal, K., Cushman, S.A., Neel, M.C. & Ene, E. (2002). FRAGSTATS:
Spatial Pattern Analysis Program for Categorical Maps. University of Massachusetts
Amherst, MA.
Meehan, T.D., Werling, B.P., Landis, D.A. & Gratton, C. (2011). Agricultural
landscape simplification and insecticide use in the Midwestern United States.
Proc. Natl Acad. Sci. USA, 108, 11500–11505.
Michener, C.D. (2000). The Bees of the World. Johns Hopkins Press, Baltimore,
Maryland.
Perfecto, I. & Vandermeer, J. (2010). The agroecological matrix as alternative to
the land-sparing/agriculture intensification model. Proc. Natl Acad. Sci. USA,
107, 5786–5791.
Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O. & Kunin,
W.E. (2010a). Global pollinator declines: trends, impacts and drivers. Trends
Ecol. Evol., 25, 345–353.
Potts, S.G., Roberts, S.P.M., Dean, R., Marris, G., Brown, M.A., Jones, R. et al.
(2010b). Declines of managed honey bees and beekeepers in Europe. J. Apic.
Res., 49, 15–22.
Pretty, J. (2008). Agricultural sustainability: concepts, principles and evidence.
Philos. Trans. R. Soc. Biol. Sci., 363, 447–465.
R Development Core Team (2008). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing Vienna, Austria.
Ricketts, T.H., Regetz, J., Steffan-Dewenter, I., Cunningham, S.A., Kremen, C.,
Bogdanski, A. et al. (2008). Landscape effects on crop pollination services: are
there general patterns? Ecol. Lett., 11, 499–515.
Rundl€of, M., Nilsson, H. & Smith, H.G. (2008). Interacting effects of
farming practice and landscape context on bumble bees. Biol. Conserv., 141,
417–426.
Saura, S. & Mart�ınez-Mill�an, J. (2000). Landscape patterns simulation with a
modified random clusters method. Landscape Ecol., 15, 661–678.
Schielzeth, H. (2010). Simple means to improve the interpretability of regression
coefficients. Methods Ecol. Evol., 1, 103–113.
Steffan-Dewenter, I. (2003). Importance of habitat area and landscape context
for species richness of bees and wasps in fragmented orchard meadows.
Conserv. Biol., 17, 1036–1044.
Steffan-Dewenter, I., Munzenberg, U., Burger, C., Thies, C. & Tscharntke, T.
(2002). Scale-dependent effects of landscape context on three pollinator
guilds. Ecology, 83, 1421–1432.
Stram, D.O. (1996). Meta-analysis of published data using a linear mixed-effects
model. Biometrics, 52, 536–544.
Tallis, H.T., Ricketts, T., Guerry, A.D., Nelson, E., Ennaanay, D., Wolny, S.
et al. (2011). InVEST 2.1 beta User’s Guide: Integrated Valuation of Ecosystem
Services and Tradeoffs. Natural Capital Project Stanford, Palo Alto, CA, p. 260.
Tscharntke, T., Steffan-Dewenter, I., Kruess, A. & Thies, C. (2002).
Characteristics of insect populations on habitat fragments: a mini review. Ecol.
Res., 17, 229–239.
Tscharntke, T., Klein, A.M., Kruess, A., Steffan-Dewenter, I. & Thies, C. (2005).
Landscape perspectives on agricultural intensification and biodiversity –
ecosystem service management. Ecol. Lett., 8, 857–874.
Tscharntke, T., Tylianakis, J.M., Rand, T.A., Didham, R.K., Fahrig, L., Batary, P.
et al. (2012). Landscape moderation of biodiversity patterns and processes –
eight hypotheses. Biol. Rev., 87, 661–685.
Vos, C.C., Verboom, J., Opdam, P.F.M. & Ter Braak, C.J.F. (2001). Toward
ecologically scaled landscape indices. Am. Nat., 157, 24–41.
Westrich, P. (1996). Habitat requirements of central European bees and the
problems of partial habitats. In: The Conservation of Bees (eds Matheson, A.,
Buchmann, S.L., O’Toole, C., Westrich, P. & Williams, I.H.). Academic Press,
London, pp. 1–16.
Williams, N.M. & Kremen, C. (2007). Resource distributions among habitats
determine solitary bee offspring production in a mosaic landscape. Ecol. Appl.,
17, 910–921.
Williams, N.M., Crone, E.E., Roulston, T.H., Minckley, R.L., Packer, L. & Potts,
S.G. (2010). Ecological and life-history traits predict bee species responses to
environmental disturbances. Biol. Conserv., 143, 2280–2291.
Winfree, R., Griswold, T. & Kremen, C. (2007a). Effect of human disturbance
on bee communities in a forested ecosystem. Conserv. Biol., 21, 213–223.
Winfree, R., Williams, N.M., Dushoff, J. & Kremen, C. (2007b). Wild bees
provide insurance against ongoing honey bee losses. Ecol. Lett., 10, 1105–
1113.
Winfree, R., Williams, N.M., Gaines, H., Ascher, J.S. & Kremen, C. (2008). Wild
bee pollinators provide the majority of crop visitation across land-use
gradients in New Jersey and Pennsylvania, USA. J. Appl. Ecol., 45, 793–802.
With, K.A. & King, A.W. (1997). The use and misuse of neutral landscape
models in ecology. Oikos, 79, 219–229. University Staff: Request a correction | Centaur Editors: Update this record
|