[1] R. Claes, T. Holvoet, and D. Weyns, “A decentralized approach for anticipatory
vehicle routing using delegate multiagent systems,” IEEE Trans.
Intell. Transp. Syst., vol. 12, no. 2, pp. 364–373, Jun. 2011.
[2] F. Jiménez and J. E. Naranjo, “Improving the obstacle detection and
identification algorithms of a laserscanner-based collision avoidance system,”
Transp. Res. Part C, Emerg. Technol., vol. 19, no. 4, pp. 658–672,
Aug. 2011.
[3] S. Glaser, B. Vanholme, S. Mammar, D. Gruyer, and L. Nouveliere,
“Maneuver-based trajectory planning for highly autonomous vehicles on
real road with traffic and driver interaction,” IEEE Trans. Intell. Transp.
Syst., vol. 11, no. 3, pp. 589–606, Sep. 2010.
[4] R. W. Hall and C. Caliskan, “Design and evaluation of an automated
highway system with optimized lane assignment,” Transp. Res. Part C,
Emerg. Technol., vol. 7, no. 1, pp. 1–15, Feb. 1999.
[5] J. B. Sheu and S. G. Ritchie, “A new methodology for incident detection
and characterization on surface streets,” Transp. Res. Part C, Emerg.
Technol., vol. 6, no. 5/6, pp. 315–335, Dec. 1998.
[6] J. Lee and B. Park, “Development and evaluation of a cooperative vehicle
intersection control algorithm under the connected vehicles environment,”
IEEE Trans. Intell. Transp. Syst., vol. 13, no. 1, pp. 81–90, Mar. 2012.
[7] M. Sarvi and M. Kuwahara, “Microsimulation of freeway ramp merging
processes under congested traffic conditions,” IEEE Trans. Intell. Transp.
Syst., vol. 8, no. 3, pp. 470–479, Sep. 2007.
[8] D. Mohan and P. S. Bawa, “An analysis of road traffic fatalities in Delhi,
India,” Accid. Anal. Prev., vol. 17, no. 1, pp. 33–45, Feb. 1985.
[9] L. Vanajakshi, S. C. Subramanian, and R. Sivanandan, “Travel time prediction
under heterogeneous traffic conditions using global positioning
system data from buses,” IET Intell. Transp. Syst., vol. 3, no. 1, pp. 1–
9, Mar. 2009.
[10] O. Brock and O. Khatib, “Elastic strips: A framework for integrated
planning and execution,” in Experimental Robotics VI. New York, NY,
USA: Springer-Verlag, 2002, pp. 329–338.
[11] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proc. IEEE Int. Conf. Robot. Autom., St. Louis, MO, USA,
1985, vol. 2, pp. 500–505.
[12] Y. K. Hwang and N. Ahuja, “A potential field approach to path planning,”
IEEE Trans. Robot. Autom., vol. 8, no. 1, pp. 23–32, Feb. 1992.
[13] Y. Yang and O. Brock, “Elastic roadmaps-motion generation for autonomous
mobile manipulation,” Autonom. Robots, vol. 28, no. 1,
pp. 113–130, Jan. 2010.
[14] S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning and
control,” in Proc. IEEE Int. Conf. Robot. Autom., 1993, pp. 802–807.
[15] R. Kala and K. Warwick, “Planning autonomous vehicles in the absence
of speed lanes using lateral potentials,” in Proc. IEEE Intell. Veh. Symp.,
Alcala de Henares, Spain, Jun. 2012, pp. 597–602.
[16] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. P. How, and G. Fiore,
“Real-time motion planning with applications to autonomous urban driving,”
IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1105–1118,
Sep. 2009.
[17] S. J. Anderson, S. B. Karumanchi, and K. Iagnemma, “Constraint-based
planning and control for safe, semi-autonomous operation of vehicles,” in
Proc. IEEE Intell. Veh. Symp., Jun. 2012, pp. 383–388.
[18] K. Chu, M. Lee, and M. Sunwoo, “Local path planning for off-road autonomous
driving with avoidance of static obstacles,” IEEE Trans. Intell.
Transp. Syst., vol. 13, no. 4, pp. 1599–1616, Dec. 2012.
[19] R. Kala and K. Warwick, “Multi-level planning for semi-autonomous
vehicles in traffic scenarios based on separation maximization,” J. Intell.
Robot. Syst.,Mar. 2013, doi:10.1007/s10846-013-9817-7, to be published.
[20] S. K. Gehrig and F. J. Stein, “Collision avoidance for vehicle-following
systems,” IEEE Trans. Intell. Transp. Syst., vol. 8, no. 2, pp. 233–244,
Jun. 2007.
[21] C. Frese and J. Beyerer, “A comparison of motion planning algorithms
for cooperative collision avoidance of multiple cognitive automobiles,” in
Proc. IEEE Intell. Veh. Symp., Jun. 2011, pp. 1156–1162.
[22] R. Kala and K. Warwick, “Motion planning of autonomous vehicles in
a non-autonomous vehicle environment without speed lanes,” Eng. Appl.
Artif. Intell., vol. 26, no. 5/6, pp. 1588–1601, May/Jun. 2013.
[23] A. Furda and L. Vlacic, “Enabling safe autonomous driving in real-world
city traffic using multiple criteria decision making,” IEEE Intell. Transp.
Syst. Mag., vol. 3, no. 1, pp. 4–17, Spring 2011.
[24] R. Schubert, K. Schulze, and G.Wanielik, “Situation assessment for automatic
lane-change maneuvers,” IEEE Trans. Intell. Transp. Syst., vol. 11,
no. 3, pp. 607–616, Sep. 2010.
[25] J. L. Baxter, E. K. Burke, J. M. Garibald, and M. Normanb, “Shared
potential fields and their place in a multi-robot co-ordination taxonomy,”
Robot. Autonom. Syst., vol. 57, no. 10, pp. 1048–1055, Oct. 2009.
[26] R. Gayle, W. Moss, M. C. Lin, and D. Manocha, “Multi-robot coordination
using generalized social potential fields,” in Proc. IEEE Int. Conf.
Robot. Autom., 2009, pp. 106–113.
[27] R. Gayle, A. Sud, E. Andersen, S. J. Guy,M. C. Lin, and D. Manocha, “Interactive
navigation of heterogeneous agents using adaptive roadmaps,”
IEEE Trans. Vis. Comput. Graphics, vol. 15, no. 1, pp. 34–48,
Jan./Feb. 2009.