Alexander, R.S., Edwards, W.S., Ankeney, J.L., 1953. The distensibility characteristics of
the portal vascular bed. Circ. Res. 1, 271–277.
Bergel, D.H., 1961. The static elastic properties of arterial wall. J. Physiol. London 156,
445–457.
Boas, D.A., Jones, S.R., Devor, A., Huppert, T.J., Dale, A.M., 2008. A vascular anatomical
network model of the spatio-temporal response to brain activation. NeuroImage 40,
1116–1129.
Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference, Second
ed. Springer.
Buxton, R.B., Wong, E.C., Frank, L.R., 1998. Dynamics of blood flow and oxygenation
changes during brain activation: the balloon model. Magn. Reson. Med. 39,
855–864.
Buxton, R.B., Uludag, K., Dubowitz, D.J., Liu, T.T., 2004. Modeling the hemodynamic
response to brain activation. NeuroImage 23, S220–S233.
Deneux, T., Faugeras, O., 2006. Using nonlinear models in fMRI data analysis: model
selection and activation detection. NeuroImage 32, 1669–1689.
Donahue, M.J., Stevens, R.D., de Boorder, M., Pekar, J.J., Hendrikse, J., van Zijl, P.C.M.,
2008. Hemodynamic changes after visual stimulation and breath holding provide
evidence for an uncoupling of cerebral blood flow and volume from oxygen
metabolism. J. Cereb. Blood Flow Metab. 29, 176–185.
Fogliardi, R., Di Donfrancesco, M., Burattini, R.,1996. Comparison of linear and nonlinear
formulations of the three-element windkessel model. Am. J. Physiol. Heart Circ.
Physiol. 40, H2661–H2668.
Frank, O., 1930. Evaluation of the shock volume of the human heat on the basis of waves
and Windkessel theory. Z. Biol. 90, 405–409.
Friston, K.J., Mechelli, A., Turner, R., Price, C.J., 2000. Nonlinear responses in fMRI: the
balloon model, volterra kernels, and other hemodynamics. NeuroImage 12,
466–477.
Grubb, R.L., Raichle, M.E., Eichling, J.O., Terpogos, M.M., 1974. Effects of changes in Paco2
on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5,
630–639.
Herman, P., Sanganahalli, B.G., Hyder, F., 2008. Multimodal measurements of blood
plasma and red blood cell volumes during functional brain activation. J. Cereb.
Blood Flow Metab. 29, 19–24.
Hillman, E.M.C., Devor, A., Bouchard, M.B., Dunn, A.K., Krauss, G.W., Skoch, J., Bacskai, B.J.,
Dale,A.M., Boas,D.A., 2007. Depth-resolved optical imaging andmicroscopy of vascular
compartment dynamics during somatosensory stimulation. NeuroImage 35, 89–104.
Huppert, T.J., Allen, M.S., Benav, H., Jones, P.B., Boas, D.A., 2007. A multicompartment
vascular model for inferring baseline and functional changes in cerebral oxygen
metabolism and arterial dilation. J. Cereb. Blood Flow Metab. 27, 1262–1279.
Ito, H., Takahashi, K., Hatazawa, J., Kim, S.-G., Kanno, I., 2001. Changes in human regional
cerebral blood flow and cerebral blood volume during visual stimulation measured
by positron emission tomography. J. Cereb. Blood Flow Metab. 21, 608–612.
Ito, H., Kanno, I., Ibaraki, M., Hatazawa, J.,Miura, S., 2003. Changes in human cerebral blood
flow and cerebral blood volume during hypercapnia and hypocapnia measured by
positron emission tomography. J. Cereb. Blood Flow Metab. 23, 665–670.
Jin, T., Wang, T., Zhao, F., Wang, P., Tasker, M., Kim, S.-G., 2006. Spatiotemporal
characteristics of BOLD, CBV and CBF responses in the cat visual cortex. Proc. Intl.
Soc. Mag. Reson. Med. 14, 2762.
Jones, R.T., 1969. Blood flow. Annu. Rev. Fluid Mech. 1, 223–244.
Jones, M., Berwick, J., Johnston, D., Mayhew, J., 2001. Concurrent optical imaging
spectroscopy and laser-Doppler flowmetry: the relationship between blood flow,
oxygenation, and volume in rodent barrel cortex. NeuroImage 13, 1002–1015.
Jones, M., Berwick, J., Mayhew, J., 2002. Changes in blood flow, oxygenation, and
volume following extended stimulation of rodent barrel cortex. NeuroImage 15,
474–487.
Kennerley, A.J., Berwick, J., Martindale, J., Johnston, D., Papadakis, N., Mayhew, J., 2005.
Concurrent fMRI and optical measures for the investigation of the hemodynamic
response function. MRM 54, 354–365.
Kida, I., Rothman, D.L., Hyder, F., 2007. Dynamics of changes in blood flow, volume, and
oxygenation: implications for dynamic functional magnetic resonance imaging
calibration. J. Cereb. Blood Flow Metab. 27, 690–696.
Kim, T., Hendrich, K.S., Masamoto, K., Kim, S.G., 2007. Arterial versus total blood volume
changes during neural activity-induced cerebral blood flow change: implication for
BOLD fMRI. J. Cereb. Blood Flow Metab. 27, 1235–1247.
Klabunde, R.E., 2005. Cardiovascular Physiology Concepts. Lippincott Williams &
Wilkins, US.
Kong, Y.Z., Zheng, Y., Johnston, D., Martindale, J., Jones, T., Billings, S., Mayhew, T., 2004. A
model of the dynamic relationship between blood flow and volume changes during
brain activation. J. Cereb. Blood Flow Metab. 24, 1382–1392.
Kontos, H.A., 1981. Regulation of the cerebral-circulation. Annu. Rev. Physiol. 43,
397–407.
Kontos, H.A., Wei, E.P., Navari, R.M., Levasseur, J.E., Rosenblum, W.I., Patterson, J.L., 1978.
Responses of cerebral-arteries and arterioles to acute hypotension and hypertension.
Am. J. Physiol. 234, H371–H383.
Lee, S.P., Duong, T.Q., Yang, G., Iadecola, C., Kim, S.G., 2001. Relative changes of cerebral
arterial and venous blood volumes during increased cerebral blood flow:
implications for BOLD fMRI. Magn. Reson. Med. 45, 791–800.
Linehan, J.H., Dawson, C.A., Rickaby, D.A., Bronikowski, T.A., 1986. Pulmonary vascular
compliance and viscoelasticity. J. Appl. Physiol. 61, 1802–1814.
Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, B.R.,
Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel with
delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689.
Martindale, J., Mayhew, J., Berwick, J., Jones, M., Martin, C., Johnston, D., Redgrave, P.,
Zheng, Y., 2003. The hemodynamic impulse response to a single neural event.
J. Cereb. Blood Flow Metab. 23, 546–555.
Mayhew, J., Zheng, Y., Hou, Y.Q., Vuksanovic, B., Berwick, J., Askew, S., Coffey, P., 1999.
Spectroscopic analysis of changes in remitted illumination: the response to
increased neural activity in brain. NeuroImage 10, 304–326.
Molino, P., Cerutti, C., Julien, C., Cuisinaud, G., Gustin, M.P., Paultre, C., 1998. Beat-to-beat
estimation of windkessel model parameters in conscious rats. Am. J. Physiol. Heart
Circ. Physiol. 43, H171–H177.
Nilsson, G.E., 1984. Signal processor for laser Doppler tissue flowmeters. Med. Biol. Eng.
Comput. 22, 343–348.
Orosz, M., Molnarka, G., Toth, M., Nadasy, G.L., Monos, E., 1999. Viscoelastic behavior of
vascular wall simulated by generalized Maxwell models — a comparative study.
Med. Sci. Monit. 5, 549–555.
Paulson, O.B., Strandgaard, S., Edvinsson, L., 1990. Cerebral autoregulation. Cerebrovasc.
Brain Metab. Rev. 2, 161–192.
Porciuncula, C.I., Armstrong, G.G., Stone, H.L., Guyton, A.C., 1964. Delayed compliance in
external jugular vein ofdog. Am. J. Physiol. 207, 728–732.
Remington, J.W., Alexander, R.S., 1955. Stretch behavior of the bladder as an approach to
vascular distensibility. Am. J. Physiol. 181, 240–248.
Risberg, J., Ancri, D., Ingvar, D.H., 1969. Correlation between cerebral blood volume and
cerebral blood flow in the cat. Exp. Brain Res. 8, 321–326.
Roy, C.S., 1881. The elastic properties of the arterial wall. J. Physiol. 3, 125–159.
Royl, G., Fuchtemeier, M., Leithner, C., Kohl-Bareis, M., Dirnagl, U., Lindauer, U., 2008.
Influence of intracranial pressure on neurovascular coupling: clarifying mechanisms
of the BOLD post-stimulus undershoot. Soc. Neurosci. 2008 (Abstract 482.6).
Segers, P., Rietzschel, E.R., De Buyzere, M.L., Stergiopulos, N., Westerhof, N., Van Bortel,
L.M., Gillebert, T., Verdonck, P.R., 2008. Three- and four-element windkessel
models: assessment of their fitting performance in a large cohort of healthy middleaged
individuals. Proc. Inst. Mech. Eng., H J. Eng. Med. 222, 417–428.
Smith, A.L., Neufeld, G.R., Ominsky, A.J.,Wollman, H., 1971. Effect of arterial CO2 tension on
cerebral blood flow,mean transit time, and vascular volume. J.Appl. Physiol. 31, 701–707.
Stergiopulos, N.,Westerhof, B.E.,Westerhof, N., 1999. Total arterial inertance as the fourth
element of the windkessel model. Am. J. Physiol. Heart Circ. Physiol. 276, H81–H88.
Ursino, M., Ter Minassian, A., Lodi, C.A., Beydon, L., 2000. Cerebral hemodynamics
during arterial and CO2 pressure changes: in vivo prediction by a mathematical
model. Am. J. Physiol. Heart Circ. Physiol. 279, H2439–H2455.
Vakorin, V.A., Krakovska, O.O., Borowsky, R., Sarty, G.E., 2007. Inferring neural activity
from BOLD signals through nonlinear optimization. NeuroImage 38, 248–260.
Vazquez, A.L., Cohen, E.R., Gulani, V., Hernandez-Garcia, L., Zheng, Y., Lee, G.R., Kim, S.G.,
Grotberg, J.B., Noll, D.C., 2006. Vascular dynamics and BOLD fMRI: CBF level effects
and analysis considerations. NeuroImage 32, 1642–1655.
Wang, K.Y., Zheng, Y., Billings, S., Coca, D., Johnston, D., Mayhew, J., 2007. Estimating CBF
changes from measurements of CBV changes: a linear dynamic modelling
approach. Soc. Neurosci. 2007 (Abstract 753.17).
Wei, H.L., Zheng, Y., Pan, Y., Coca, D., Li, L.M., Mayhew, J., Billings, S., in press. Model
estimation of cerebral hemodynamics between blood flow and volume changes: a
data-based modelling approach. IEEE Trans Biomedical Engineering. doi 10.1109/
TBME.2009.2012722. http://www.ncbi.nlm.nih.gov/pubmed/19174333.
Westerhof, N., Elzinga, G., Sipkema, P., 1971. An Artificial arterial system for pumping
hearts. J. Appl. Physiol. 31, 776–781.
Zheng, Y., Martindale, J., Johnston,D., Jones, M., Berwick, J., Mayhew, J., 2002.Amodel
of the hemodynamic response and oxygen delivery to brain. NeuroImage 16,
617–637.
Zheng, Y., Johnston, D., Berwick, J., Chen, D.M., Billings, S., Mayhew, J., 2005. A threecompartment
model of the hemodynamic response and oxygen delivery to brain.
NeuroImage 28, 925–939.