Model estimation of cerebral hemodynamics between blood flow and volume changes: A data-based modeling approachWei, H.-L., Zheng, Y. ORCID: https://orcid.org/0000-0001-7472-6427, Pan, Y., Coca, D., Li, L.-M., Mayhew, J.E.W. and Billings, S.A. (2009) Model estimation of cerebral hemodynamics between blood flow and volume changes: A data-based modeling approach. IEEE Transactions on Biomedical Engineering, 56 (6). pp. 1606-1616. ISSN 0018-9294 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1109/TBME.2009.2012722 Abstract/SummaryIt is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |