[1] M. S. Beauchamp, K. E. Lee, J. V. Haxby, and
A. Martin. fMRI responses to video and pointlight
displays of moving humans and manipulable
objects. Journal of Cognitive Neuroscience,
15(7):991–1001, 2003.
[2] G. A. Bekey. Autonomous robots. MIT Press, 2005.
[3] R. A. Brooks. Robot. Penguin, 2002.
[4] M. Chiappalone, A. Vato, L. Berdondini,
M. Koudelka-Hep, and S. Martinoia. Network
dynamics and synchronous activity in cultured
cortical neurons. International journal of neural
systems, 17(2):87–103, 2007.
[5] I. Daly, S. J. Nasuto, and K. Warwick. Single tap
identification for fast BCI control. Cognitive Neurodynamics,
5(1):21–30, 2011.
[6] T. B. DeMarse, D. A. Wagenaar, A. W. Blau, and
S. M. Potter. e neurally controlled animat: biological
brains acting with simulated bodies. Autonomous
Robots, 11(3):305–310, 2001.
[7] J. P. Donoghue, A. Nurmikko, G. Friehs, and
M. Black. Development of neuromotor prostheses
for humans. Supplements to Clinical neurophysiology,
57:588–602, 2004. Chapter 63 in Advances
in Clinical Neurophysiology.
[8] M. Gasson, B. Hutt, I. Goodhew, P. Kyberd, and
K. Warwick. Invasive neural prosthesis for neural
signal detection and nerve stimulation. International
journal of adaptive control and signal processing,
19(5):365–375, 2005.
[9] J. Hameed, I. Harrison, M. N. Gasson, and
K. Warwick. A novel human-machine interface
using subdermal magnetic implants. In Proc.
IEEE International Conference on Cybernetic Intelligent
Systems, pages 106–110, 2010.
[10] L. R. Hochberg, M. D. Serruya, G. M. Friehs,
J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner,
D. Chen, R. D. Penn, and J. P. Donoghue.
Neuronal ensemble control of prosthetic devices
by a human with tetraplegia. Nature,
442:164–171, 2006.
[11] P. Kennedy, D. Andreasen, P. Ehirim, B. King,
T. Kirby, H. Mao, and M. Moore. Using human
extra-cortical local field potentials to control
a switch. Journal of neural engineering, 1(2):72–77,
2004.
[12] N. Kumar. Brain computer interface. Cochin University
of Science & Technology Report, Kochi-
682022, 2008.
[13] J. Millan, F. Renkens, J. Mourino, and W. Gerstner.
Non-invasive brain-actuated control of a mobile
robot by human EEG. IEEE Transactions on
Biomedical Engineering, 51(6):1026–1033, 2004.
[14] C. T. Nordhausen, E. M. Maynard, and R. A.
Normann. Single unit recording capabilities of a
100 microelectrode array. Brain research, 726(1-
2):129–140, 1996.
[15] R. Palaniappan. Two-stage biometric authentication
method using thought activity brain
waves. International Journal of Neural Systems,
18(1):59–66, 2008.
[16] M. M. Pinter, M. Murg, F. Alesch, B. Freundl,
R. J. Helscher, and H. Binder. Does
deep brain stimulation of the nucleus ventralis
intermedius affect postural control and locomotion
in parkinson’s disease? Movement Disorders,
14(6):958–963, 1999.
[17] G. Rainer, M. Augath, T. Trinath, and N. K. Logothetis.
Nonmonotonic noise tuning of BOLD
fMRI signal to natural images in the visual cortex
of the anesthetized monkey. Current Biology,
11(11):846–854, 2001.
[18] L. Rossini, D. Izzo, and L. Summerer. Brainmachine
interfaces for space applications. In
Proc. IEEE International Conference on Engineering
in Medicine and Biology, pages 520–523. IEEE,
2009.
[19] J. D. Simeral, S. P. Kim, M. J. Black, J. P.
Donoghue, and L. R. Hochberg. Neural control
of cursor trajectory and click by a human with
tetraplegia 1000 days after implant of an intracortical
microelectrode array. Journal of Neural Engineering,
8(2):025027, 2011.
[20] K. Tanaka, K. Matsunaga, and H. O. Wang.
Electroencephalogram-based control of an electric
wheelchair. Robotics, IEEE Transactions on
Robotics, 21(4):762–766, 2005.
[21] L. J. Trejo, R. Rosipal, and B. Matthews. Braincomputer
interfaces for 1-D and 2-D cursor control:
designs using volitional control of the EEG
spectrum or steady-state visual evoked potentials.
IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 14(2):225–229, 2006.
[22] K. Warwick. I, Cyborg. University of Illinois Press,
2004.
[23] K. Warwick. e promise and threat of
modern cybernetics. Southern Medical Journal,
100(1):112–115, 2007.
[24] K. Warwick. Implications and consequences of
robots with biological brains. Ethics and information
technology, 12(3):223–234, 2010.
[25] K. Warwick and M. Gasson. Practical interface
experiments with implant technology. In “Computer
Vision in Human-Computer Interaction”, Lecture
Notes in Computer Science, volume 3058, pages
7–16, 2004.
[26] K. Warwick, M. Gasson, B. Hutt, I. Goodhew,
P. Kyberd, B. Andrews, P. Teddy, and
A. Shad. e application of implant technology
for cybernetic systems. Archives of Neurology,
60(10):1369–1373, 2003.
[27] K. Warwick, M. Gasson, B. Hutt, I. Goodhew,
P. Kyberd, H. Schulzrinne, and X. Wu. ought
communication and control: a first step using radiotelegraphy.
IEE Proceedings on Communications,
151(3):185–189, 2004.
[28] K. Warwick, S. Nasuto, V. Becerra, and B. Whalley.
Experiments with an in-vitro robot brain.
In Y. Cai, editor, “Instinctive Computing”, Lecture
Notes in Artificial Intelligence, volume 5987, pages
1–15, 2010.
[29] D. Wu, K. Warwick, Z. Ma, J. G. Burgess, S. Pan,
and T. Z. Aziz. Prediction of Parkinson’s disease
tremor onset using radial basis function neural
networks. Expert Systems with Applications,
37(4):2923–2928, 2010.
[30] D. Wu, K. Warwick, Z. Ma, M. N. Gasson, J. G.
Burgess, S. Pan, and T. Z. Aziz. Prediction
of Parkinson’s disease tremor onset using a radial
basis function neural network based on particle
swarm optimization. International journal of neural
systems, 20(2):109–118, 2010.