Accessibility navigation


Physico-chemical controls on phosphorus cycling in two lowland streams. Part 2 - The sediment phase

Evans, D. J., Johnes, P. J. and Lawrence, D. S. (2004) Physico-chemical controls on phosphorus cycling in two lowland streams. Part 2 - The sediment phase. Science of the Total Environment, 329 (1-3). pp. 165-182. ISSN 0048-9697

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.scitotenv.2004.02.023

Abstract/Summary

This article investigates the temporal and spatial controls on sediment-phosphorus (P) dynamics in two contrasting sub-catchments of the River Kennet, England. Suspended sediment (collected under representative flow conditions) and size-fractionated bedload (collected weekly for one year) from the Rivers Lambourn and Enborne was analysed for a range of physico-chemical determinands. Total P concentrations were highest in the most mobile fractions of sediment: suspended sediment, fine silt and clay and organic matter (mean concentrations of 1758, 1548 and 1440 mug P g(-1) dry sediment, respectively). Correlation analysis showed significant relationships between total P and total iron (n = 110), total manganese (n = 110), organic matter (n = 110) and specific surface area (n = 28) in the Lambourn (r(2) 0.71, 0.68, 0.62 and 0.52, respectively) and between total P and total iron (n = 110), total manganese (n = 110) and organic matter (n = 110) in the Enborne (r(2) 0.74, 0.85 and 0.68, respectively). These data highlight the importance of metal oxyhydroxide adsorption of P on fine particulates and organic matter. However, high total P concentrations in the granule gravel and coarse sand size fraction during the summer period (mean concentration 228 mug P g(-1) dry sediment) also highlight the role of calcite co-precipitation on P dynamics in the Lambourn. P to cation ratios in Lambourn sediment indicated that fine silt and clay and granule gravel and coarse sand size fractions were potential sources of P release to the water column during specific periods of the summer and autumn. In the Enborne, however, only the granule gravel and coarse sand size fraction had high ratios and a slow, constant release of P was observed. In addition, scanning electron microscopy work confirmed the association of P with calcite in the Lambourn and P with iron on clay particles in the Enborne. The study highlighted the importance of the chemical and physical properties of the sediment in influencing the mechanisms controlling P storage and release within river channels. (C) 2004 Elsevier B.V. All rights reserved.

Item Type:Article
Divisions:Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Science > School of Archaeology, Geography and Environmental Science > Earth Systems Science
ID Code:3497
Uncontrolled Keywords:phosphorus River Kennet River Lambourn River Enbome suspended sediment bedload sediment metal oxyhydroxide adsorption calcite phosphorus co-precipitation FINE-GRAINED SEDIMENT RIVER-BASINS TRANSPORT MATTER WATER UK ADSORPTION DYNAMICS IRON LAKE
Additional Information:

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation