* R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics 65,
Academic Press, New York-London, 1975.
* J. Avron, P. H. M. v. Mouche, B. Simon, On the measure of the Spectrum for the almost Mathieu operator, Commun. Math. Phys. 132, 103–118 (1990).
* J. H. Bardarson, M. Titov, P. W. Brouwer, Electrostatic Confinement of Electrons in an Integrable Graphene Quantum Dot, Phys. Rev. Lett. 102, 226803 (2009).
* M. S. Birman, A. Laptev, Discrete spectrum of the perturbed Dirac operator, Ark. Mat. 32, 13–32 (1994).
* M. S. Birman, M. Z. Solomyak, Spectral asymptotics of pseudodif- ferential operators with anisotropic homogeneous symbols, I, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 13, 13–21 (1977); II, Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 13, 5–10 (1979) (Russian).
* L. Brey, H. A. Fertig, Emerging Zero Modes for Graphene in a Peri- odic Potential, Phys. Rev. Lett. 103, 046809 (2009).
* M. Cwikel, Weak type estimates for singular values and the number of bound states of Schro ̈dinger operators, Ann. of Math. 106, 93–100 (1977).

* K. Golden, S. Goldstein, J.L. Lebowitz, Classical transport in modu- lated structures, Phys. Rev. Lett. 55, no. 24, 2629–2632 (1985).
* D. M. Elton, N. T. Ta, Eigenvalue Counting Estimates for a Class of Linear Spectral Pencils with Applications to Zero Modes, J. Math. Anal. Appl. 391, 613–618 (2012) .
* F. Gesztesy, D. Gurarie, H. Holden, M. Klaus, L. Sadun, B. Simon, P. Vogl, Trapping and cascading eigenvalues in the large coupling limit, Commun. Math. Phys. 118, 597–634 (1988).
* P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964.
* R. R. Hartmann, N. J. Robinson, M. E. Portnoi, Smooth electron waveguides in graphene, Phys. Rev. B 81, 245431 (2010) .
* S. Jitomirskaya, C. A. Marx, Analytic quasi-periodic Schrdinger op- erators and rational frequency approximants, Geom. Funct. Anal. 22, no. 5, 1407–1443 (2012).
* M. Kac, On the distribution of values of trigonometric sums with linearly independent frequencies, Amer. J. Math. 65, no. 4, 609–615 (1943).
* M. Kac, E. R. van Kampen, A. Wintner, On the distribution of the values of real almost periodic functions, Amer. J. Math. 61, 985–991 (1939).
* M. Klaus, On the point spectrum of Dirac operators, Helv. Phys. Acta 53, 453–462 (1980).
* M. Reed, B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, San Diego, 1978.
* W. Rudin, Real and Complex Analysis, 3rd Edition, McGraw-Hill, Singapore, 1987.
* O. Safronov, The discrete spectrum of selfadjoint perturbations of vari- able sign, Commun. PDE 26, no. 3-4, 629–649 (2001).
* K. M. Schmidt, Spectral properties of rotationally symmetric massless Dirac operators, Lett. Math. Phys. 92, 231–241 (2010).
* E. M. Stein, R. Shakarchi, Fourier Analysis: An Introduction, Prince- ton University Press, Princeton, 2003.
* P. Stein, On the Real Zeros of a certain Trigonometric Function, Math. Proc. Cambridge Philos. Soc. 31, 455–467 (1935).
* D. A. Stone, C. A. Downing, M. E. Portnoi, Searching for confined modes in graphene channels: The variable phase method, Phys. Rev. B 86, 075464 (2012).
* E. Wegert, G. Semmler, Phase plots of complex functions: a journey in illustration, Notices AMS 58, 768–780 (2010).
* H. Weyl, Inequalities between two kinds of eigenvalues of a linear transformation, Proc. Natl. Acad. Sci. USA 35, 408–411 (1949).