[1] B. Bobath, Adult hemiplegia: evaluation and treatment, 3rd
ed. oxford: Heinemann Medical Books, 1990.
[2] J. H. Carr and R. B. Shepherd, A motor relearning
programme for stroke, 2nd ed. Oxford and Rockville, Md.:
Heinemann Medical Books, 1987.
[3] M. S. ROOD, “Neurophysiological reactions as a basis for
physical therapy.,” Phys Ther Rev, vol. 34, no. 9, pp. 444–
449, Sep. 1954.
[4] M. Knott and D. E. Voss, Proprioceptive neuromuscular
facilitation. New York: Hoeber Medical Division, Harper &
Row, 1968.
[5] S. Brunnstrom, Movement Therapy in Hemiplegia: a
Neurophysiological Approach, First Edition. Medical Dept. ,
Harper & Row,, 1970.
[6] E. Cotton and R. Kinsman, Conductive Education for Adult
Hemiplegia. Edinburgh and New York: Churchill
Livingstone, 1983.
[7] M. A. Banks, Stroke (International Perspectives in Physical
Therapy, 2). Churchill Livingstone, 1986.
[8] A. Sunderland, D. J. Tinson, E. L. Bradley, D. Fletcher, R.
Langton Hewer, and D. T. Wade, “Enhanced physical therapy
improves recovery of arm function after stroke. A
randomised controlled trial.,” J. Neurol. Neurosurg.
Psychiatr., vol. 55, no. 7, pp. 530–535, Jul. 1992.
[9] G. Kwakkel, R. C. Wagenaar, T. W. Koelman, G. J.
Lankhorst, and J. C. Koetsier, “Effects of intensity of
rehabilitation after stroke. A research synthesis.,” Stroke, vol.
28, no. 8, pp. 1550–1556, Aug. 1997.
[10] N. B. Lincoln, R. H. Parry, and C. D. Vass, “Randomized,
controlled trial to evaluate increased intensity of
physiotherapy treatment of arm function after stroke.,”
Stroke, vol. 30, no. 3, pp. 573–579, Mar. 1999.
[11] E. Taub, G. Uswatte, and R. Pidikiti, “Constraint-Induced
Movement Therapy: a new family of techniques with broad
application to physical rehabilitation--a clinical review.,” J
Rehabil Res Dev, vol. 36, no. 3, pp. 237–251, Jul. 1999.
[12] R. C. V. Loureiro, W. S. Harwin, K. Nagai, and M. Johnson,
“Advances in upper limb stroke rehabilitation: a technology
push.,” Med Biol Eng Comput, vol. 49, no. 10, pp. 1103–
1118, Jul. 2011.
[13] S. C. Cramer and E. P. Bastings, “Mapping clinically relevant
plasticity after stroke.,” Neuropharmacology, vol. 39, no. 5,
pp. 842–851, Mar. 2000.
[14] B. B. Connor, A. M. Wing, G. W. Humphreys, R. M.
Bracewell, and D. A. Harvey, “Errorless learning using haptic
guidance: Research in cognitive rehabilitation following
stroke,” 4th Intl Conference on Disability, Virtual Reality and
Associated Technology, pp. 77–84, 2002.
[15] J. L. Patton, M. E. Stoykov, M. Kovic, and F. A. Mussa-
Ivaldi, “Evaluation of robotic training forces that either
enhance or reduce error in chronic hemiparetic stroke
survivors.,” Exp Brain Res, vol. 168, no. 3, pp. 368–383, Jan.
2006.
[16] B. E. Fisher and K. J. Sullivan, “Activity-dependent factors
affecting poststroke functional outcomes.,” Top Stroke
Rehabil, vol. 8, no. 3, pp. 31–44, 2001.
[17] R. J. Nudo, “Functional and structural plasticity in motor
cortex: implications for stroke recovery.,” Phys Med Rehabil
Clin N Am, vol. 14, no. 1, pp. S57–76, Feb. 2003.
[18] A. C. Lo, P. D. Guarino, L. G. Richards, J. K. Haselkorn, G.
F. Wittenberg, D. G. Federman, R. J. Ringer, T. H. Wagner,
H. I. Krebs, B. T. Volpe, C. T. Bever, D. M. Bravata, P. W.
Duncan, B. H. Corn, A. D. Maffucci, S. E. Nadeau, S. S.
Conroy, J. M. Powell, G. D. Huang, and P. Peduzzi, “Robotassisted
therapy for long-term upper-limb impairment after
stroke.,” N Engl J Med, vol. 362, no. 19, pp. 1772–1783, May
2010.
[19] S. E. Fasoli, H. I. Krebs, J. Stein, W. R. Frontera, R. Hughes,
and N. Hogan, “Robotic therapy for chronic motor
impairments after stroke: follow-up results,” Archives of
Physical Medicine and Rehabilitation, vol. 85, no. 7, pp. 6–6,Jun. 2004.
[20] P. S. Lum, C. G. Burgar, M. Van der Loos, P. C. Shor, M.
Majmundar, and R. Yap, “MIME robotic device for upperlimb
neurorehabilitation in subacute stroke subjects: A
follow-up study.,” JRRD, vol. 43, no. 5, pp. 631–642, Jan.
2006.
[21] D. J. Reinkensmeyer, M. A. Maier, E. Guigon, V. Chan, O.
Akoner, E. T. Wolbrecht, S. C. Cramer, and J. E. Bobrow,
“Do robotic and non-robotic arm movement training drive
motor recovery after stroke by a common neural mechanism?
Experimental evidence and a computational model.,” Conf
Proc IEEE Eng Med Biol Soc, vol. 2009, pp. 2439–2441,
2009.
[22] S. Masiero, A. Celia, G. Rosati, and M. Armani, “Roboticassisted
rehabilitation of the upper limb after acute stroke.,”
Archives of Physical Medicine and Rehabilitation, vol. 88,
no. 2, pp. 142–149, Feb. 2007.
[23] E. J. Koeneman, R. S. Schultz, S. L. Wolf, D. E. Herring, and
J. B. Koeneman, “A pneumatic muscle hand therapy device,”
presented at the 26th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, 2004,
vol. 3, pp. 2711–2713.
[24] C. D. Takahashi, L. Der-Yeghiaian, V. H. Le, and S. C.
Cramer, “A Robotic Device for Hand Motor Therapy after
Stroke,” presented at the 9th International Conference on
Rehabilitation Robotics, 2005. ICORR 2005., 2005, pp. 17–
20.
[25] A. S. Merians, “Sensorimotor Training in a Virtual Reality
Environment: Does It Improve Functional Recovery
Poststroke?,” Neurorehabilitation and Neural Repair, vol. 20,
no. 2, pp. 252–267, Jun. 2006.
[26] F. Amirabdollahian, R. Loureiro, E. Gradwell, C. Collin, W.
Harwin, and G. Johnson, “Multivariate Analysis of the Fugl-
Meyer Outcome Measures Assessing the Effectiveness of
GENTLE/S Robot-Mediated Stroke Therapy,” J
NeuroEngineering Rehabil, vol. 4, no. 1, p. 16, 2007.
[27] R. C. V. Loureiro, B. Lamperd, C. Collin, and W. S. Harwin,
“Reach & grasp therapy: Effects of the Gentle/G System
assessing sub-acute stroke whole-arm rehabilitation,”
presented at the Rehabilitation Robotics, 2009. ICORR 2009.
IEEE International Conference on, 2009, pp. 755–760.
[28] J. G. Colebatch and S. C. Gandevia, “The distribution of
muscular weakness in upper motor neuron lesions affecting
the arm.,” Brain, vol. 112, pp. 749–763, Jun. 1989.
[29] P. W. Duncan, L. B. Goldstein, R. D. Horner, P. B.
Landsman, G. P. Samsa, and D. B. Matchar, “Similar motor
recovery of upper and lower extremities after stroke.,” Stroke,
vol. 25, no. 6, pp. 1181–1188, Jun. 1994.
[30] A. M. Wing, A. Turton, and C. Fraser, “Grasp size and
accuracy of approach in reaching.,” J Mot Behav, vol. 18, no.
3, pp. 245–260, Sep. 1986.
[31] P. Haggard and A. Wing, “On the hand transport component
of prehensile movements.,” J Mot Behav, vol. 29, no. 3, pp.
282–287, Sep. 1997.
[32] W. S. Harwin, A. Murgia, and E. K. Stokes, “Assessing the
effectiveness of robot facilitated neurorehabilitation for
relearning motor skills following a stroke.,” Med Biol Eng
Comput, vol. 49, no. 10, pp. 1093–1102, Oct. 2011.
[33] J. J. Scholz, M. C. M. Klein, T. E. J. T. Behrens, and H. H.
Johansen-Berg, “Training induces changes in white-matter
architecture.,” Nature neuroscience Nature Publishing
Group, vol. 12, no. 11, pp. 1370–1371, Nov. 2009.
[34] R. Van der Linde, P. Lammertse, and E. Frederiksen, “The
HapticMaster, a new high-performance haptic interface,”
Proc Eurohaptics, 2002.
[35] R. C. V. Loureiro and W. S. Harwin, “Reach & Grasp
Therapy: Design and Control of a 9-DOF Robotic Neurorehabilitation
System,” presented at the Rehabilitation
Robotics, 2007. ICORR 2007. IEEE 10th International
Conference on, 2007, pp. 757–763.
[36] D. M. Wolpert, Z. Ghahramani, and M. I. Jordan, “Are arm
trajectories planned in kinematic or dynamic coordinates? An
adaptation study.,” Exp Brain Res, vol. 103, no. 3, pp. 460–
470, 1995.
[37] E. Nakano, H. Imamizu, R. Osu, Y. Uno, H. Gomi, T.
Yoshioka, and M. Kawato, “Quantitative examinations of
internal representations for arm trajectory planning: minimum
commanded torque change model.,” J. Neurophysiol., vol. 81,
no. 5, pp. 2140–2155, May 1999.
[38] N. Hogan, “An organizing principle for a class of voluntary
movements.,” J. Neurosci., vol. 4, no. 11, pp. 2745–2754,
Nov. 1984.
[39] T. Flash and N. Hogan, “The coordination of arm
movements: an experimentally confirmed mathematical
model.,” J. Neurosci., vol. 5, no. 7, pp. 1688–1703, Jul. 1985.
[40] F. Amirabdollahian, R. Loureiro, and W. Harwin, “Minimum
jerk trajectory control for rehabilitation and haptic
applications,” presented at the Robotics and Automation,
2002. Proceedings. ICRA '02. IEEE International Conference
on, 2002, vol. 4, pp. 3380–3385.
[41] R. Loureiro, F. Amirabdollahian, M. Topping, B. Driessen,
and W. Harwin, “Upper Limb Robot Mediated Stroke
Therapy—GENTLE/s Approach,” Autonomous Robots, vol.
15, no. 1, Jul. 2003.
[42] T. Flash and E. Henis, “Arm Trajectory Modifications During
Reaching Towards Visual Targets,” Journal of Cognitive
Neuroscience, vol. 3, no. 3, pp. 220–230, Jul. 1991.
[43] M. Jeannerod, Intersegmental coordination during reaching
at natural visual objects. Attention and performance IX,
1981.
[44] T. Iberall, “Grasp planning for human prehension,” Proc of
the Int Joint Conf on Artificial Intelligence, 1987.
[45] B. Hoff and M. A. Arbib, “Models of trajectory formation
and temporal interaction of reach and grasp,” Journal of
Motor Behauior, vol. 25, pp. 175–192, 1993.
[46] P. Haggard and A. Wing, “Coordinated responses following
mechanical perturbation of the arm during prehension,”
Experimental Brain Research, vol. 102, no. 3, 1995.
[47] A. R. Fugl-Meyer, L. Jääskö, I. Leyman, S. Olsson, and S.
Steglind, “The post-stroke hemiplegic patient. 1. a method for
evaluation of physical performance,” Scand J Rehabil Med,
vol. 7, no. 1, pp. 13–31, 1975.
[48] D. T. Wade, Measurement in Neurological Rehabilitation
(Oxford Medical Publications). Oxford University Press,
2000.
[49] J. H. Carr, R. B. Shepherd, L. Nordholm, and D. Lynne,
“Investigation of a new motor assessment scale for stroke
patients.,” Phys Ther, vol. 65, no. 2, pp. 175–180, Feb. 1985.
[50] C. E. Lang, J. M. Wagner, D. F. Edwards, S. A. Sahrmann,
and A. W. Dromerick, “Recovery of Grasp versus Reach in
People with Hemiparesis Poststroke,” Neurorehabilitation
and Neural Repair, vol. 20, no. 4, pp. 444–454, Dec. 2006.
[51] J. Klein, S. J. Spencer, and D. J. Reinkensmeyer, “Breaking It
Down Is Better: Haptic Decomposition of Complex
Movements Aids in Robot-Assisted Motor Learning,” Neural
Systems and Rehabilitation Engineering, IEEE Transactions
on, vol. 20, no. 3, 2012.
[52] A. J. Butler and S. J. Page, “Mental Practice With Motor
Imagery: Evidence for Motor Recovery and Cortical
Reorganization After Stroke,” Archives of Physical Medicine
and Rehabilitation, vol. 87, no. 12, pp. 2–11, Dec. 2006.