[1] S. Chen, S. McLaughlin, and B. Mulgrew, “Complex-valued radial basis
function network, Part I: Network architecture and learning algorithms,”
Signal Processing, vol. 35, no. 1, pp. 19–31, Jan. 1994.
[2] S. Chen, S. McLaughlin, and B. Mulgrew, “Complex-valued radial basis
function network, Part II: Application to digital communications channel
equalisation,” Signal Processing, vol. 36, no. 2, pp. 175–188, March
1994.
[3] A. Uncini, L. Vecci, P. Campolucci, and F. Piazza, “Complex valued
neural networks with adaptive spline activation function for digital radio
links nonlinear equalization,” IEEE Trans. Signal Processing, vol. 47,
no. 2, pp. 505–514, Feb. 1999.
[4] T. Kim and T. Adali, “Approximation by fully complex multilayer
perceptrons,” Neural Computation, vol. 15, no. 7, pp. 1641–1666, July
2003.
[5] C.-C. Yang and N. K. Bose, “Landmine detection and classification
with complex-valued hybrid neural network using scattering parameters
dataset,” IEEE Trans. Neural Networks, vol. 16, no. 3, pp. 743–753,
May 2005.
[6] M. B. Li, G. B. Guang, P. Saratchandran, and N. Sundararajan, “Fully
complex extreme learning machine,” Neurocomputing, vol. 68, pp. 306–
314, Oct. 2005.
[7] A. Hirose, Complex Valued Neural Networks. Berlin: Springer-Verlag,
2006.
[8] S. Chen, X. Hong, C. J. Harris, and L. Hanzo, “Fully complex-valued
radial basis function networks: Orthogonal least squares regression and
classification,” Neurocomputing, vol. 71, no. 16-18, pp. 3421–3433, Oct.
2008.
[9] T. Nitta, Ed., Complex-Valued Neural Networks: Utilizing High-
Dimensional Parameters. New York: Information Science Reference,
2009.
[10] A. S. Gangal, P. K. Kalra, and D. S. Chauhan, “Inversion of complex
valued neural networks using complex back-propagation algorithm,” Int.
J. Mathematics and Computers in Simulation, vol. 3, no. 1, pp. 1–8,
2009.
[11] M. Kobayashi, “Exceptional reducibility of complex-valued neural networks,”
IEEE Trans. Neural Networks, vol. 21, no. 7, pp. 1060–1072,
July 2010.
[12] A. Hirose, ed., Complex-Valued Neural Networks: Advances and Applications.
Hoboken, NJ: John Wiley & Sons, 2012 (in press).
[13] S. A. Billings, “Identification of nonlinear systems – a survey,” IEE
Proc. D, vol. 127, no. 6, pp. 272–285, Nov. 1980.
[14] I. W. Hunter and M. J. Korenberg, “The identification of nonlinear biological
systems: Wiener and Hammerstein cascade models,” Biological
Cybernetics, vol. 55, nos. 2-3, pp. 135–144, 1986.
[15] E. W. Bai, “An optimal two-stage identification algorithm for
Hammerstein-Wiener nonlinear systems,” Automatica, vol. 34, no. 3,
pp. 333–338, March 1998.
[16] Y. Zhu, “Estimation of an N-L-N Hammerstein-Wiener model,” Automatica,
vol. 38, no. 9, pp. 1607–1614, Sept. 2002.
[17] J. Schoukens, J. G. Nemeth, P. Crama, Y. Rolain, and R. Pintelon, “Fast
approximate identification of nonlinear systems,” Automatica, vol. 39,
no. 7, pp. 1267–1274, July 2003.
[18] K. Hsu, T. Vincent, and K. Poolla, “A kernel based approach to
structured nonlinear system identification part I: algorithms,” in Proc.
14th IFAC Symp. System Identification (Newcastle, Australia), March
29-31, 2006, 6 pages.
[19] K. Hsu, T. Vincent, and K. Poolla, “A kernel based approach to
structured nonlinear system identification part II: convergence and
consistency,” in Proc. 14th IFAC Symp. System Identification (Newcastle,
Australia), March 29-31, 2006, 6 pages.
[20] W. Greblicki, “Nonparametric identification of Wiener systems,” IEEE
Trans. Information Theory, vol. 38, no. 5, pp. 1487–1493, Sept. 1992.
[21] A. Kalafatis, N. Arifin, L. Wang, and W. R. Cluett, “A new approach to
the identification of pH processes based on the Wiener model,” Chemical
Engineering Science, vol. 50, no. 23, pp. 3693–3701, Dec. 1995.
[22] A. D. Kalafatis, L. Wang, and W. R. Cluett, “Identification of Wienertype
nonlinear systems in a noisy environment,” Int. J. Control, vol. 66,
no. 7, pp. 923–941, 1997.
[23] Y. Zhu, “Distillation column identification for control using Wiener
model,” in Proc. 1999 American Control Conference (San Diego, USA),
June 2-4, 1999, pp. 3462–3466.
[24] J. C. Gomez, A. Jutan, and E. Baeyens, “Wiener model identification
and predictive control of a pH neutralisation process,” IEE Proc. Control
Theory and Applications, vol. 151, no. 3, pp. 329–338, May 2004.
[25] I. Skrjanc, S. Blazic, and O. E. Agamennoni, “Interval fuzzy modeling
applied to Wiener models with uncertainties,” IEEE Trans. Systems, Man
and Cybernetics, Part B, vol. 35, no. 5, pp. 1092–1095, Oct. 2005.
[26] A. Hagenblad, L. Ljung, and A. Wills, “Maximum likelihood identification
of Wiener models,” Automatica, vol. 44, no. 11, pp. 2697–2705,
Nov. 2008.
[27] S. A. Billings and S. Y. Fakhouri, “Non-linear system identification
using the Hammerstein model,” Int. J. Systems Science, vol. 10, no. 5,
pp. 567–578, May 1979.
[28] P. Stoica and T. S¨oderstr¨om, “Instrumental-variable methods for identification
of Hammerstein systems,” Int. J. Control, vol. 35, no. 3, pp. 459–
476, 1982.
[29] A. Balestrino, A. Landi, M. Ould-Zmirli, and L. Sani, “Automatic
nonlinear auto-tuning method for Hammerstein modelling of electrical
drives,” IEEE Trans. Industrial Electronics, vol. 48, no. 3, pp. 645–655,
June 2001.
[30] J. Turunen, J. T. Tanttu, and P. Loula, “Hammerstein model for speech
coding,” EURASIP J. Applied Signal Processing, vol. 2003, pp. 1238–
1249, Jan. 2003.
[31] J. Jeraj and V. J. Matthews, “A stable adaptive Hammerstein filter
employing partial orthogonalization of the input signals,” IEEE Trans.
Signal Processing, vol. 54, no. 4, pp. 1412–1420, April 2006.
[32] S. W. Su, L. Wang, B. G. Celler, A. V. Savkin, and Y. Guo, “Identification
and control for heart rate regulation during treadmill exercise,”
IEEE Trans. Biomedical Engineering, vol. 54, no. 7, pp. 1238–1246,
July 2007.
[33] X. Hong and R. J. Mitchell, “Hammerstein model identification algorithm
using Bezier-Bernstein approximation,” IET Control Theory and
Applications, vol. 1, no. 1, pp. 1149–1159, April 2007.
[34] X. Hong, R. J. Mitchell, and S. Chen, “Modeling and control of
Hammerstein system using B-spline approximation and the inverse of
De Boor algorithm,” Int. J. Systems Science, vol. 43, no. 10, pp. 1976–
1984, Oct. 2012.
[35] X. Hong and S. Chen, “Modeling of complex-valued Wiener systems
using B-spline neural network,” IEEE Trans. Neural Networks, vol 22,
no. 5, pp. 818–825, May 2011.
[36] G. Farin, Curves and Surfaces for Computer-Aided Geometric Design:
A Practical Guide. Fourth Edition. Boston: Academic Press, 1996.
[37] C. De Boor, A Practical Guide to Splines. New York: Spring Verlag,
1978.
[38] T. Kavli, “ASMOD – an algorithm for adaptive spline modelling of
observation data,” Int. J. Control, vol. 58, no. 4, pp. 947–967, 1993.
[39] M. Brown and C. J. Harris, Neurofuzzy Adaptive Modelling and Control.
Hemel Hempstead: Prentice Hall, 1994.
[40] C. J. Harris, X. Hong, and Q. Gan, Adaptive Modelling, Estimation
and Fusion from Data: A Neurofuzzy Approach. Berlin: Springer-Verlag,
2002.
[41] Y. Yang, L. Guo, and H. Wang, “Adaptive statistic tracking control based
on two-step neural networks with time delays,” IEEE Trans. Neural
Networks, vol. 20, no. 3, pp. 420–429, March 2009.
[42] X. Hong, S. Chen, and C. J. Harris, “Complex-valued B-spline neural
networks for modelling and inverse of Wiener systems,” chapter 9
in: A. Hirose, ed., Complex-Valued Neural Networks: Advances and
Applications. Hoboken, NJ: John Wiley & Sons, 2013, pp. 209–233.
[43] A. A. M. Saleh, “Frequency-independent and frequency-dependent
nonlinear models of TWT amplifiers,” IEEE Trans. Communications,
vol. COM-29, no. 11, pp.1715–1720, Nov. 1981.
[44] M. Honkanen and S.-G. H¨aggman, “New aspects on nonlinear power
amplifier modeling in radio communication system simulations,” in
Proc. PIMRC’97 (Helsinki, Finland), Sept. 1-4, 1997, pp. 844–848.
[45] C. J. Clark, G. Chrisikos, M. S. Muha, A. A. Moulthrop, and C. P. Silva,
“Time-domain envelope measurement technique with application to
wideband power amplifier modeling,” IEEE Trans. Microwave Theory
and Techniques, vol. 46, no. 12, pp. 2531–2540, Dec. 1998.
[46] J. H. K. Vuolevi, T. Rahkonen, and J. P. A. Manninen, “Measurement
technique for characterizing memory effects in RF power amplifiers,”
IEEE Trans. Microwave Theory and Techniques, vol. 49, no. 8, pp. 1383–
1389, Aug. 2001.
[47] R. J. Hathaway and J. C. Bezdek, “Grouped coordinate minimization using
Newton’s method for inexact minimization in one vector coordinate,”
J. Optimization Theory and Applications, vol. 71, no. 3, pp. 503–516,
Dec. 1991.
[48] Z. Q. Luo and P. Tseng, “On the convergence of the coordinate descent
method for convex differentiable minimization,” J. Optimization Theory
and Applications, vol. 72, no. 1, pp. 7–35, Jan. 1991.
[49] T. Lyche and J. M. Pena, “Optimally stable multivariate bases,” Advances
in Computational Mathematics, vol. 20, nos. 1-3, pp. 149–159, Jan.
2004.
[50] B. Igelnik, “Kolmogorov’s spline complex network and adaptive dynamic
modeling of data,” in: T. Nitta, Ed., Complex-Valued Neural Networks:
Utilizing High-Dimensional Parameters. New York: Information
Science Reference: 2009, pp. 56–78.
[51] M. Scarpiniti, D. Vigliano, R. Parisi, and A. Uncini, “Flexible blind
signal separation in the complex domain,” in: T. Nitta, Ed., Complex-
Valued Neural Networks: Utilizing High-Dimensional Parameters. New
York: Information Science Reference, 2009, pp. 284–323.
[52] S. Haykin, Adaptive Filter Theory (2nd Edition). Englewood, NJ:
Prentice Hall, 1991.
[53] L. Hanzo, S. X. Ng, T. Keller, and W. Webb, Quadrature Amplitude
Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised
and Space-Time Coded OFDM, CDMA and MC-CDMA Systems. Chichester,
UK: John Wiley, 2004.
[54] L. Hanzo, M. M¨unster, B. J. Choi, and T. Keller, OFDM and MC-CDMA
for Broadband Multi-User Communications, WLANs and Broadcasting.
Chichester, UK: John Wiley, 2003.
[55] J. G. Proakis, Digital communications (4th edition). McGraw-Hill, 2000.