[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Journal of Computer Networks, vol. 38, no. 4, pp. 393-422, March 2002.
[2] J. Yick, B. Mukherjee, and D. Ghosal, “Wireless sensor network survey,” Journal of Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug. 2008.
[3] K. Kinsella and D. R. Phillips, “Global aging: the challenge of success,” Population Bulletin, vol. 60, 2005.
[4] Tabulation on the 2010 population census of the people’s republic of China, China Statistics, May 2013, on-line.
[5] S. Demura, S. Shin, S. Takahashi, and S. Yamaji, “Relationships between gait properties on soft surfaces, physical function, and fall risk for the elderly,” Advances in Aging Research, vol. 2, pp. 57-64, May 2013.
[6] S. R. Lord and J. Dayhew, “Visual risk factors for falls in older people,” Journal of American Geriatrics Society, vol. 49, no. 5, pp. 508-515, Dec. 2001.
[7] WHO, “The injury chart-book: a graphical overview of the global burden of injury,” Geneva: WHO, pp. 43-50, 2012.
[8] M. Mubashir, L. Shao, and L. Seed, “A survey on fall detection: Principles and approaches,” Neurocomputing, vol. 100, no. 16, pp. 144-152, Jan. 2013.
[9] Q. Zhang, L. Ren, and W. Shi, “HONEY a multimodality fall detection and telecare system,” Telemedicine and e-Health, vol. 19, no. 5, pp. 415-429, Apr. 2013.
[10] F. Bagalà, C. Becker, A. Cappello, L. Chiari, and K. Aminian, “Evaluation of accelerometer-based
fall detection algorithm in real-world falls,” PLoS ONE, vol. 7, no. 5, pp. 1-8, May 2012.
[11] S. Abbate, M. Avvenuti, F. Bonatesta, G. Cola, P. Corsini, and A.Vecchio, “A smartphone-based
fall detection system,” Pervasive and Mobile Computing, vol. 8, no. 6, pp. 883-899, Dec. 2012.
[12] S. Abbate, M. Avvenuti, G. Cola, P. Corsini, J.V. Light, and A.Vecchio, “Recognition of false
alarms in fall detection systems,” in Proc. 2011 IEEE Consumer Communications and Networking
Conference, Las Vegas, USA, pp. 23-28, Jan. 2011.
[13] Y.W Bai, S.C. Wu, and C.L. Tsai, “Design and implementation of a fall monitor system by using a
3-axis accelerometer in a smart phone,” IEEE Trans. Consumer Electron., vol. 58, no. 4, pp. 1269-
1275, Nov. 2012.
[14] M. Yu, A. Rhuma, S. Naqvi, L. Wang, and J. Chambers, “A posture recognition-based fall detection
system for monitoring an elderly person in a smart home environment,” IEEE Trans. Infor. Tech.
Biom., vol. 16, no. 6, pp. 1274-1286, Aug. 2012.
[15] C. Rougier, J. Meunier, A.S. Arnaud, and J. Rousseau, “Robust video surveillance for fall detection
based on human shape deformation,” IEEE Trans. Circ. Syst. for Video Tech., vol. 21, no. 5, pp. 611-
622, May 2011.
[16] M. Popescu, Y. Li, M. Skubic, M. Rantz, “An Acoustic Fall Detector System that Uses Sound
Height Information to Reduce the False Alarm Rate”, in Proc. 30th Int. IEEE Eng. in Medicine and
Bio. Soc. Conference, pp. 4628-4631, Aug. 2008.
[17] J. Winkley, P. Jiang, and W. Jiang, “Verity: An Ambient Assisted Living Platform,” IEEE Trans.
Consumer Electron., vol. 58, no. 2, pp. 364-373, May 2012.
[18] H.R. Yan, H.W. Huo, Y.Z. Xu, and M. Gidlund, “Wireless sensor network based E-health system:
implementation and experimental results,” IEEE Trans. Consumer Electron., vol. 56, no. 4, pp.
2288-2295, Nov. 2010.
[19] D.M. Karantonis, M.R. Narayanan, M. Mathie, “Implementation of a real-time human movement
classifier using a triaxial accelerometer for ambulatory monitoring,” IEEE Trans. Infor. Tech. Biom.,
vol. 10, no. 1, pp. 156-167, Jan. 2006.