Accessibility navigation


Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density

Lin, M., Hang, J., Li, Y., Luo, Z. ORCID: https://orcid.org/0000-0002-2082-3958 and Sandberg, M. (2014) Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density. Building and Environment, 79. pp. 152-167. ISSN 0360-1323

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.buildenv.2014.05.008

Abstract/Summary

This paper investigates urban canopy layers (UCL) ventilation under neutral atmospheric condition with the same building area density (λp=0.25) and frontal area density (λf=0.25) but various urban sizes, building height variations, overall urban forms and wind directions. Turbulent airflows are first predicted by CFD simulations with standard k-ε model evaluated by wind tunnel data. Then air change rates per hour (ACH) and canopy purging flow rate (PFR) are numerically analyzed to quantify the rate of air exchange and the net ventilation capacity induced by mean flows and turbulence. With a parallel approaching wind (θ=0o), the velocity ratio first decreases in the adjustment region, followed by the fully-developed region where the flow reaches a balance. Although the flow quantities macroscopically keep constant, however ACH decreases and overall UCL ventilation becomes worse if urban size rises from 390m to 5km. Theoretically if urban size is infinite, ACH may reach a minimum value depending on local roof ventilation, and it rises from 1.7 to 7.5 if the standard deviation of building height variations increases (0% to 83.3%). Overall UCL ventilation capacity (PFR) with a square overall urban form (Lx=Ly=390m) is better as θ=0o than oblique winds (θ=15o, 30o, 45o), and it exceeds that of a staggered urban form under all wind directions (θ=0o to 45o), but is less than that of a rectangular urban form (Lx=570m, Ly=270m) under most wind directions (θ=30o to 90o). Further investigations are still required to quantify the net ventilation efficiency induced by mean flows and turbulence.

Item Type:Article
Refereed:Yes
Divisions:Science > School of the Built Environment > Urban Living group
Science > School of the Built Environment > Energy and Environmental Engineering group
ID Code:36694
Uncontrolled Keywords:Urban canopy layer (UCL) ventilation; air change rate per hour (ACH); purging flow rate (PFR); computational fluid dynamics (CFD)
Publisher:Elsevier

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation