Accessibility navigation

Potassium leaching in undisturbed soil cores following surface applications of gypsum

Jalali, M. and Rowell, D. L. (2009) Potassium leaching in undisturbed soil cores following surface applications of gypsum. Environmental Geology, 57 (1). pp. 41-48. ISSN 0943-0105

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1007/s00254-008-1280-6


Displacement studies on leaching of potassium (K+) were conducted under unsaturated steady state flow conditions in nine undisturbed soil columns (15.5 cm in diameter and 25 cm long). Pulses of K+ applied to columns of undisturbed soil were leached with distilled water or calcium chloride (CaCl2) at a rate of 18 mm h(-1). The movement of K+ in gypsum treated soil leached with distilled water was at a similar rate to that of the untreated soil leached with 15 mM CaCl2. The Ca2+ concentrations in the leachates were about 15 mM, the expected values for the dissolution of the gypsum. When applied K+ was displaced with the distilled water, K+ was retained in the top 10-12.5 cm depth of soil. In the undisturbed soil cores there is possibility of preferential flow and lack of K+ sorption. The application of gypsum and CaCl2 in the reclamation of sodic soils would be expected to leach K+ from soils. It can also be concluded that the use of sources of water for irrigation which have a high Ca2+ concentration can also lead to leaching of K+ from soil. Average effluent concentration of K+ during leaching period was 30.2 and 28.6 mg l(-1) for the gypsum and CaCl2 treated soils, respectively. These concentrations are greater than the recommended guideline of the World Health Organisation (12 mg K+ l(-1)).

Item Type:Article
Divisions:Science > School of Archaeology, Geography and Environmental Science
Interdisciplinary centres and themes > Soil Research Centre
ID Code:3670
Additional Information:

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation