1)
R. Gordon . (2009)
Gordon, R. (Eds.): ‘Chapter 3: functional ITS design issues’, in ‘Intelligent freeway transportation systems’ (Springer, NY, 2009), pp. 17–40.
2)
S. Kim , M.E. Lewis , C.C. White . Optimal vehicle routing with real-time traffic information. IEEE Trans. Intell. Transp. Syst. , 2 , 178 - 188
3)
R. Claes , T. Holvoet , D. Weyns .
Claes, R., Holvoet, T., Weyns, D.: ‘A decentralized approach for anticipatory vehicle routing using delegate multiagent systems’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (2), pp. 64–373 (doi: 10.1109/TITS.2011.2105867).
. IEEE Trans. Intell. Transp. Syst. , 2 , 64 - 373
4)
D. Weyns , T. Holvoet , A. Helleboogh .
Weyns, D., Holvoet, T., Helleboogh, A.: ‘Anticipatory vehicle routing using delegate multi-agent systems’. Proc. IEEE Intelligent Transportation Systems Conf., Seattle, WA, 2007, pp. 87–93.
. Proc. IEEE Intelligent Transportation Systems Conf. , 87 - 93
5)
S. Maniccam .
Maniccam, S.: ‘Adaptive decentralized congestion avoidance in two-dimensional traffic’, Phys. A, Stat. Mech. Appl., 2006, 363, (2), pp. 512–526 (doi: 10.1016/j.physa.2005.08.039).
. Phys. A, Stat. Mech. Appl. , 2 , 512 - 526
6)
Y. Ando , Y. Fukazawa , O. Masutani , H. Iwasaki , S. Honiden .
Ando, Y., Fukazawa, Y., Masutani, O., Iwasaki, H., Honiden, S.: ‘Performance of pheromone model for predicting traffic congestion’. Proc. Fifth Int. Jt. Conf. on Autonomous Agents and Multiagent Systems, New York, 2006, pp. 73–80.
. Proc. Fifth Int. Jt. Conf. on Autonomous Agents and Multiagent Systems , 73 - 80
7)
W. Narzt , G. Pomberger , U. Wilflingseder .
Narzt, W., Pomberger, G., Wilflingseder, U., et al: ‘Self-organization in trafric networks by digital pheromones’. Proc. IEEE Intelligent Transportation Systems Conf., Seattle, WA, 2007, pp. 490–495.
. Proc. IEEE Intelligent Transportation Systems Conf. , 490 - 495
8)
C.P.I.J. van Hinsbergen , A. Hegyi , J.W.C. van Lint , H.J. van Zuylen .
van Hinsbergen, C.P.I.J., Hegyi, A., van Lint, J.W.C., van Zuylen, H.J.: ‘Bayesian neural networks for the prediction of stochastic travel times in urban networks’, IET Intell. Transp. Syst., 2011, 5, (4), pp. 259–265 (doi: 10.1049/iet-its.2009.0114).
. IET Intell. Transp. Syst. , 4 , 259 - 265
9)
H. Dia .
Dia, H.: ‘An object-oriented neural network approach to short-term traffic forecasting’, Eur. J. Oper. Res., 2001, 131, (2), pp. 253–261 (doi: 10.1016/S0377-2217(00)00125-9).
. Eur. J. Oper. Res. , 2 , 253 - 261
10)
S. Innamaa . Short-term prediction of travel time using neural networks on an interurban highway. Transportation , 649 - 669
11)
H.R. Kirby , S.M. Watson , M.S. Dougherty .
Kirby, H.R., Watson, S.M., Dougherty, M.S.: ‘Should we use neural networks or statistical models for short-term motorway traffic forecasting?’, Int. J. Forecast., 1997, 13, (1), pp. 43–50 (doi: 10.1016/S0169-2070(96)00699-1).
. Int. J. Forecast. , 1 , 43 - 50
12)
J. van Lint .
van Lint, J.: ‘Incremental and online learning through extended kalman filtering with constraint weights for freeway travel time prediction’. Proc. Intelligent Transportation Systems Conf., Toronto, 2006, pp. 1041–1046.
. Proc. Intelligent Transportation Systems Conf. , 1041 - 1046
13)
E. Miller-Hooks , H. Mahmassani .
Miller-Hooks, E., Mahmassani, H.: ‘Path comparisons for a priori and time-adaptive decisions in stochastic, time-varying networks’, Eur. J. Oper. Res., 2003, 146, (1), pp. 67–82 (doi: 10.1016/S0377-2217(02)00231-X).
. Eur. J. Oper. Res. , 1 , 67 - 82
14)
S. Opasanon , E. Miller-Hooks .
Opasanon, S., Miller-Hooks, E.: ‘Multicriteria adaptive paths in stochastic, time-varying networks’, Eur. J. Oper. Res., 2006, 173, (1), pp. 72–91 (doi: 10.1016/j.ejor.2004.12.003).
. Eur. J. Oper. Res. , 1 , 72 - 91
15)
Q. Song , X. Wang .
Song, Q., Wang, X.: ‘Efficient routing on large road networks using hierarchical communities’, IEEE Trans. Intell. Transp. Syst., 2011, 12, (2), pp. 132–140 (doi: 10.1109/TITS.2010.2072503).
. IEEE Trans. Intell. Transp. Syst. , 2 , 132 - 140
16)
B. Tatomir , L. Rothkrantz .
Tatomir, B., Rothkrantz, L.: ‘Hierarchical routing in traffic using swarm-intelligence’. Proc. 2006 Intelligent Transportation Systems Conf., Toronto, 2006, pp. 230–235.
. Proc. 2006 Intelligent Transportation Systems Conf. , 230 - 235
17)
Q. Li , Z. Zeng , B. Yang .
Li, Q., Zeng, Z., Yang, B.: ‘Hierarchical model of road network for route planning in vehicle navigation systems’, IEEE Intell. Transp. Syst. Mag., 2009, 1, (2), pp. 20–24 (doi: 10.1109/MITS.2009.933860).
. IEEE Intell. Transp. Syst. Mag. , 2 , 20 - 24
18)
R. Bishop .
Bishop, R.: ‘Intelligent vehicle applications worldwide’, IEEE Intell. Syst. Appl., 2000, 15, (1), pp. 78–81 (doi: 10.1109/5254.820333).
. IEEE Intell. Syst. Appl. , 1 , 78 - 81
19)
D. Reichardt , M. Miglietta , L. Moretti , P. Morsink , W. Schulz .
Reichardt, D., Miglietta, M., Moretti, L., Morsink, P., Schulz, W.: ‘CarTALK 2000: safe and comfortable driving based upon inter-vehicle-communication’. Proc. 2002 IEEE Intelligent Vehicle Symp., 2002, vol. 2, pp. 545–550.
. Proc. 2002 IEEE Intelligent Vehicle Symp. , 545 - 550
20)
R. Kala .
Kala, R.: ‘Motion planning for multiple autonomous vehicles’, PhD thesis, University of Reading, UK, 2013.
21)
P.E. Hart , N.J. Nilsson , B. Raphael . A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. , 2 , 100 - 107
22)
Openstreetmap, available at: http://www.openstreetmap.org, accessed August 2012.
23)
M. Treiber , A. Hennecke , D. Helbing .
Treiber, M., Hennecke, A., Helbing, D.: ‘Congested traffic states in empirical observations and microscopic simulations’, Phys. Rev. E, 62, (2), pp. 1805–1824 (doi: 10.1103/PhysRevE.62.1805).
. Phys. Rev. E , 2 , 1805 - 1824