Accessibility navigation


Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil

Lesage, E., Meers, E., Vervaeke, P., Lamsal, S., Hopgood, M., Tack, F. M. G. and Verloo, M. G. (2005) Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. International Journal of Phytoremediation, 7 (2). pp. 143-152. ISSN 1522-6514

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1080/16226510590950432

Abstract/Summary

High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved. However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by mosthigh biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine letraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0. 1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0. 01, 0. 05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.

Item Type:Article
Divisions:Science > School of Archaeology, Geography and Environmental Science
Interdisciplinary centres and themes > Soil Research Centre
ID Code:3744
Uncontrolled Keywords:citric acid EDTA heavy metals Helianthus annuus phytoextraction CHELATE-ASSISTED PHYTOEXTRACTION CONTAMINATED SOILS LEAD PHYTOEXTRACTION ORGANIC-ACIDS INDIAN MUSTARD PHYTOREMEDIATION PLANTS REMEDIATION TRANSLOCATION ACCUMULATION
Additional Information:

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation