Accessibility navigation


Structure and magnetic properties of polydisperse ferrofluids: a molecular dynamics study

Wang, Z. and Holm, C. (2003) Structure and magnetic properties of polydisperse ferrofluids: a molecular dynamics study. Physical Review E, 68 (4). 041401. ISSN 1539-3755

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1103/PhysRevE.68.041401

Abstract/Summary

We study by Langevin molecular dynamics simulations systematically the influence of polydispersity in the particle size, and subsequently in the dipole moment, on the physical properties of ferrofluids. The polydispersity is in a first approximation modeled by a bidisperse system that consists of small and large particles at different ratios of their volume fractions. In the first part of our investigations the total volume fraction of the system is fixed, and the volume fraction phi(L) of the large particles is varied. The initial susceptibility chi and magnetization curve of the systems show a strong dependence on the value of phi(L). With the increase of phi(L), the magnetization M of the system has a much faster increment at weak fields, and thus leads to a larger chi. We performed a cluster analysis that indicates that this is due to the aggregation of the large particles in the systems. The average size of these clusters increases with increasing phi(L). In the second part of our investigations, we fixed the volume fraction of the large particles, and increased the volume fraction phi(S) of the small particles in order to study their influence on the chain formation of the large ones. We found that the average aggregate size formed by large particles decreases when phi(S) is increased, demonstrating a significant effect of the small particles on the structural properties of the system. A topological analysis of the structure reveals that the majority of the small particles remain nonaggregated. Only a small number of them are attracted to the ends of the chains formed by large particles.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Mathematical, Physical and Computational Sciences > Department of Mathematics and Statistics
ID Code:38017
Publisher:American Physical Society

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation