Accessibility navigation


Bacterial motility confers fitness advantage in the presence of phages

Taylor, T. B. and Buckling, A. (2013) Bacterial motility confers fitness advantage in the presence of phages. Journal of Evolutionary Biology, 26 (10). pp. 2154-2160. ISSN 1010-061X

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1111/jeb.12214

Abstract/Summary

Dispersal provides the opportunity to escape harm and colonize new patches, enabling populations to expand and persist. However, the benefits of dispersal associated with escaping harm will be dependent on the structure of the environment and the likelihood of escape. Here, we empirically investigate how the spatial distribution of a parasite influences the evolution of host dispersal. Bacteriophages are a strong and common threat for bacteria in natural environments and offer a good system with which to explore parasite-mediated selection on host dispersal. We used two transposon mutants of the opportunistic bacteria, Pseudomonas aeruginosa, which varied in their motility (a disperser and a nondisperser), and the lytic bacteriophage ФKZ. The phage was distributed either in the central point of colony inoculation only, thus offering an escape route for the dispersing bacteria; or, present throughout the agar, where benefits of dispersal might be lost. Surprisingly, we found dispersal to be equally advantageous under both phage conditions relative to when phages were absent. A general explanation is that dispersal decreased the spatial structuring of host population, reducing opportunities for parasite transmission, but other more idiosyncratic mechanisms may also have contributed. This study highlights the crucial role the parasites can play on the evolution of dispersal and, more specifically, that bacteriophages, which are ubiquitous, are likely to select for bacterial motility.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences > Ecology and Evolutionary Biology
ID Code:39011
Uncontrolled Keywords:bacteriophage; dispersal evolution; motility; parasite-mediated selection
Publisher:Wiley-Blackwell

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation