[1]J.M. Leiva-Murillo, A. Artes-Rodríguez, Information-theoretic linear feature ex-traction based on kernel density estimators: a review, IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 42(6) (2012) 1180–1189.
[2]G. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regres-sion and multiclass classification, IEEE Trans. Syst. Man Cybern., Part B, Cybern. 42(2) (2011) 513–529.
[3]G.-B. Huang, D. Wang, Y. Lan, Extreme learning machines: a survey, Int. J. Mach. Learn. Cybern. 2(2) (2011) 107–122.
[4]C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discov. 2 (1998) 121–167.
[5]V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, USA, 1995.
[6]X. Yin, B. Ng, B. Fischer, B. Ferguson, D. Abbott, Support vector machine ap-plications in terahertz pulsed signals feature sets, IEEE Sens. J. 7(12) (2007) 1597–1608.
[7]X. Yin, B. Ng, D. Abbott, Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction, Springer-Verlag, New York, USA, 2012.
[8]Y. Iye, Composite fermions and bosons: an invitation to electron masquerade in Quantum Hall, Proc. Natl. Acad. Sci. USA 96 (1999) 8821–8822.
[9]K.R. Waters, J. Mobley, J.G. Miller, Causality-imposed (Kramers–Kronig) rela-tionships between attenuation and dispersion, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(5) (2005) 822–833.
[10]A. El-Gindy, G. Hadad, Nonparametric Bayeserror estimation using unclassified samples, J. AOAC Int. 95(3) (2012) 609–623.
[11]G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and ap-plications, Neurocomputing 70(1–3) (2006) 489–501.
[12]P. Bouboulis, K. Slavakis, S. Theodoridis, Adaptive learning in complex repro-ducing kernel Hilbertspaces employing Wirtinger’ssubgradients, IEEE Trans. Neural Netw. Learn. Syst. 2(99) (2012) 260–276.
[13]G. Scheuermann, H. Krüger, M. Menzel, A. Rockwood, Visualizing nonlinear vec-tor field topology, IEEE Trans. Vis. Comput. Graph. 4(2) (1998) 109–116.
[14]H. Li, Invariant Algebras and Geometric Reasoning, World Scientific, Singapore, 2008.
[15]T. Nitta, Complex-Valued Neural Networks: Utilizing High-Dimensional Param-eters, Information Science Reference, Pennsylvania, 2009.
[16]E. Hitzer, T. Nitta, Y. Kuroe, Applications of Clifford’sgeometric algebra, Adv. Appl. Clifford Algebras 23(2) (2013) 377–404.
[17]V. Dietrich, K. Habetha, G. Jank, Clifford Algebras and Their Application in Mathematical Physics, Kluwer Academic Publishers, Springer, Dordrecht, The Netherlands, 1998.
[18]E. Corrochano, G. Sobczyk, Geometric Algebra with Applications in Science and Engineering, Birkhäuser Boston, c/o Springer-Verlag, New York, 2001.
[19]B. Sethuraman, Division algebras and wireless communication, Not. Am. Math. Soc. 57(11) (2010) 1432–1439.
[20]A. Hirose, Complex-Valued Neural Networks, World Scientific Publishing, Sin-gapore, 2003.
[21]E. Bayro-Corrochano, Geometric neural computing, IEEE Trans. Neural Netw. 12(5) (2001) 968–986.
[22]E. Bayro-Corrochano, N. Arana-Daniel, Clifford support vector machines for classification, regression, and recurrence, IEEE Trans. Neural Netw. 21(11) (2010) 1731–1746.
[23]M.-B. Li, G.-B. Huang, P. Saratchandran, N. Sundararajan, Fully complex extreme learning machine, Neurocomputing 68 (2005) 306–314.
[24]R.V. Babu, S. Suresh, Fully complex-valued ELM classifiers for human ac-tion, in: The 2011 International Joint Conference on Neural Networks, 2011, pp.2803–2808.
[25]G.C.W.J.W. Bowen, S. Hadjiloucas, Sample-induced beam distortions in tera-hertz time domain spectroscopy and imaging systems, in: Joint 32nd Inter-national Conference on Infrared and Millimetre Waves and 15th International Conference on Terahertz Electronics, 2007, pp.208–209.
[26]S. Hadjiloucas, L. Karatzas, J. Bowen, Measurements of leaf water content using terahertz radiation, IEEE Trans. Microw. Theory Tech. 47(2) (1999) 142–149.
[27]F.A. Tobar, A. Kuh, D.P. Mandic, A novel augmented complex valued kernel LMS, in: The7th IEEE Sensor Array and Multichannel Workshop, 2012, pp.473–476.
[28]A. Shilton, D. Lai, Quaternionic and complex-valued support vector regression for equalization and function approximation, in: International Joint Conference on Neural Networks, IJCNN, 2007, pp.920–925.
[29]P. Bouboulis, S. Theodoridis, Extension of Wirtinger’s calculus to reproducing kernel Hilbert spaces and the complex kernel LMS, IEEE Trans. Signal Process. 59(3) (2011) 964–978.
[30]G.-B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regres-sion and multiclass classification, IEEE Trans. Syst. Man Cybern., Part B, Cybern. 42(2) (2012) 513–529.
[31]X.-X. Yin, B. Ng, B. Ferguson, D. Abbott, Wavelet based local tomographic image using terahertz techniques, Digit. Signal Process. 19(4) (2009) 750–763.
[32]B. Ferguson, S. Wang, H. Zhong, D. Abbott, X.-C. Zhang, Powder retection with t-ray imaging, in: Terahertz for Military and Security Application, in: Proceed-ing of SPIE, vol.5070, 2003, pp.7–16.
[33]K. Fukunaga, D.L. Kessell, Chemometrics in pharmaceutical analysis: an in-troduction, review, and future perspectives, IEEE Trans. Inf. Theory IT-19(4) (1973) 434–440.
[34]K. Fukunaga, D.M. Hummels, Leave-one-out procedures for nonparametric error estimates, IEEE Trans. Pattern Anal. Mach. Intell. 11(4) (1989) 421–423.
[35]R.R. Jackson, C.M. Carter, M.S. Tarsitano, Trial-and-error solving of a confine-ment problem by a jumping spider, Portiafimbriata, Behaviour 138(10) (2001) 1215–1234.
[36]Y.J.Y. Jin, B. Sendhoff, Pareto-based multi-objective machine learning: an overview and case studies, IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 38(3) (2008) 397–415.
[37]J.D. Rodríguez, A. Perez, D. Arteta, D. Tejedor, J.A. Lozano, Using multidimen-sional Bayesiannetwork classifiers to assist the treatment of multiple sclerosis, IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 42(6) (2012) 1705–1715.
[38]H.Q. Vu, G. Li, N.S. Sukhorukova, G. Beliakov, S. Liu, C. Philippe, H. Amiel, A.Ugon, K-complex detection using a hybrid-synergic machine learning method, IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 39(4) (2012) 1478–1490.
[39]D. Muni, N. Pal, J. Das, Genetic programming for simultaneous feature selection and classifierdesign, IEEE Trans. Syst. Man Cybern., PartC Appl. Rev. 36(1) (2006) 106–117.
[40]K. Mao, Identifying critical variables of principal components for unsupervised feature selection, IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 35(2) (2005) 339–344.
[41]S. Salcedo-Sanz, G. Camps-Valls, F. Perez-Cruz, J. Sepulveda-Sanchis, C. Bousono-Calzon, Enhancing genetic feature selection through restricted search and Walshanalysis, IEEE Trans. Syst. Man Cybern., PartC Appl. Rev. 34(4) (2004) 398–406.
[42]J. Park, S. Baek, S. Bae, M. Jeong, Dual features functional support vector ma-chines for fault detection of rechargeable batteries, IEEE Trans. Syst. Man Cy-bern., Part C Appl. Rev. 39(4) (2009) 480–485.
[43]O. Omitaomu, M. Jeong, A. Badiru, J. Hines, On-line support vector regression approach for the monitoring of motor shaft misalignment and feed-water low rate, IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 37(5) (2007) 962–970.
[44]P. Maji, S. Paul, Rough sets for selection of molecular descriptors to predict biological activity of molecules, IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 40(6) (2010) 639–648.
[45]G. Duan, Y.-W. Chen, A machine learning-based framework for automatic visual inspection of microdrill bits in PCB production, IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 42(6) (2012) 1679–1689.
[46]Y.-S. Jeong, I.-H. Kang, M.-K. Jeong, D. Kong, A new feature selection method for one-class classification problems, IEEE Trans. Syst. Man Cybern., Part C Appl. Rev. 39(4) (2012) 1500–1509.