[1] A. E. Ruano, Ed., Intelligent Control Systems Using Computational
Intelligence Techniques. London, U.K.: IEE Publishing, 2005.
[2] R. Murray-Smith and T. A. Johansen, Multiple Model Approaches to
Modeling and Control. Bristol, PA, USA: Taylor and Francis, 1997.
[3] S. G. Fabri and V. Kadirkamanathan, Functional Adaptive Control: An
Intelligent Systems Approach. London, U.K.: Springer, 2001.
[4] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans.
Neural Netw., vol. 2, no. 2, pp. 302–309, Mar. 1991.
[5] S. R. Gun, “Support vector machines for classification and regression,”
Dept. Electron. Comput. Sci., ISIS Group, University of Southampton,
Southampton, U.K., May 1998.
[6] G. C. Cawley and N. L. C. Talbot, “On over-fitting in model selection
and subsequent selection bias in performance evaluation,” J. Mach.
Learn. Res., vol. 11, pp. 2079–2107, Jul. 2010.
[7] D. Du, K. Li, X. Li, M. Fei, and H. Wang, “A multi-output twostage
locally regularized model construction method using the extreme
learning machine,” Neurocomputing, vol. 128, pp. 104–112, Mar. 2014.
[8] M. Stone, “Cross-validatory choice and assessment of statistical predictions,”
J. Royal Stat. Soc. B, vol. 36, no. 2, pp. 111–147, 1974.
[9] G. H. Golub, M. Heath, and G. Wahba, “Generalized cross-validation as
a method for choosing good ridge parameter,” Technometrics, vol. 21,
no. 2, pp. 215–223, 1979.
[10] S. Chen, Y. Wu, and B. L. Luk, “Combined genetic algorithm optimization
and regularized orthogonal least squares learning for radial
basis function networks,” IEEE Trans. Neural Netw., vol. 10, no. 5,
pp. 1239–1243, Sep. 1999.
[11] M. J. L. Orr, “Regularisation in the selection of radial basis function
centers,” Neural Comput., vol. 7, no. 3, pp. 606–623, 1995.
[12] X. Hong and S. A. Billings, “Parameter estimation based on stacked
regression and evolutionary algorithms,” IEE Proc. Control Theory
Appl., vol. 146, no. 5, pp. 406–414, Sep. 1999.
[13] L. Ljung and T. Glad, Modeling of Dynamic Systems. Englewood Cliffs,
NJ, USA: Prentice Hall, 1994.
[14] S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods
and their applications to non-linear system identification,” Int. J. Control,
vol. 50, no. 5, pp. 1873–1896, 1989.
[15] M. J. Korenberg, “Identifying nonlinear difference equation and functional
expansion representations: The fast orthogonal algorithm,” Ann.
Biomed. Eng., vol. 16, no. 1, pp. 123–142, 1988.
[16] D. Du, X. Li, M. Fei, and G. W. Irwin, “A novel locally regularized automatic
construction method for RBF neural models,” Neurocomputing,
vol. 98, pp. 4–11, Dec. 2012.
[17] L. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation,
and orthogonal least-squares learning,” IEEE Trans. Neural Netw.,
vol. 3, no. 5, pp. 807–814, Sep. 1992.
[18] X. Hong and C. J. Harris, “Neurofuzzy design and model construction
of nonlinear dynamical processes from data,” IEE Proc. Control Theory
Appl., vol. 148, no. 6, pp. 530–538, Nov. 2001.
[19] Q. Zhang, “Using wavelets network in nonparametric estimation,” IEEE
Trans. Neural Netw., vol. 8, no. 2, pp. 227–236, Mar. 1993.
[20] S. A. Billings and H. L. Wei, “The wavelet-NARMAX representation:
A hybrid model structure combining polynomial models with multiresolution
wavelet decompositions,” Int. J. Syst. Sci., vol. 36, no. 3,
pp. 137–152, 2005.
[21] R. H. Myers, Classical and Modern Regression with Applications, 2nd
Ed. Boston, MA, USA: PWS-KENT, 1990.
[22] X. Hong, P. M. Sharkey, and K. Warwick, “Automatic nonlinear predictive
model construction using forward regression and the PRESS
statistic,” IEE Proc. Control Theory Appl., vol. 150, no. 3, pp. 245–254,
May 2003.
[23] S. Chen, X. Hong, C. J. Harris, and P. M. Sharkey, “Sparse modeling
using orthogonal forward regression with PRESS statistic and regularization,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 2,
pp. 898–911, Apr. 2004.
[24] S. A. Billings, S. Chen, and R. Backhouse, “The identification of linear
and nonlinear models of a turbocharged automotive diesel engine,”
Mech. Syst. Signal Process., vol. 3, no. 2, pp. 123–142, 1989.
[25] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.
[26] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
J. Royal Stat. Soc. B, vol. 58, no. 1, pp. 267–288, 1996.
[27] B. Efron, I. Johnstone, T. Hastie, and R. Tibshirani, “Least angle
regression,” Ann. Stat., vol. 32, no. 2, pp. 407–451, 2004.
[28] S. Chen, “Locally regularized orthogonal least squares algorithm for the
construction of sparse kernel regression models,” in Proc. 6th Int. Conf.
Signal Process., Beijing, China, 2002, pp. 1229–1232.
[29] D. J. C. MacKay, “Bayesian methods for adaptive models,” Ph.D. dissertation,
Dept. Comput. Neural Syst., California Inst. Technol., Pasadena,
CA, USA, 1992.
[30] S. Chen, X. Hong, and C. J. Harris, “Sparse kernel regression modeling
using combined locally regularized orthogonal least squares and
D-optimality experimental design,” IEEE Trans. Autom. Control, vol. 48,
no. 6, pp. 1029–1036, Jun. 2003.
[31] S. Chen, X. Hong, and C. J. Harris, “Non-linear system identification
using particle swarm optimization tuned radial basis function models,”
Int. J. Bio-Ins. Comput., vol. 1, no. 4, pp. 246–258, 2009.
[32] S. Chen, X. Hong, and C. J. Harris, “Construction of tunable radial basis
function networks using orthogonal forward selection,” IEEE Trans.
Syst., Man, Cybern. B, Cybern., vol. 39, no. 2, pp. 457–466, Apr. 2009.
[33] S. Chen, X. Hong, and C. J. Harris, “Particle swarm optimization aided
orthogonal forward regression for unified data modeling,” IEEE Trans.
Evol. Comput., vol. 14, no. 4, pp. 477–499, Aug. 2010.
[34] S. Chen and S. A. Billings, “Representation of nonlinear systems: The
NARMAX model,” Int. J. Control, vol. 49, no. 3, pp. 1013–1032, 1989.
[35] S. A. Billings and W. Voon, “A prediction-error and stepwise-regression
estimation algorithm for nonlinear systems,” Int. J. Control, vol. 44,
no. 3, pp. 803–822, 1986.
[36] G. E. P. Box and G. M. Jenkins, Time Series Analysis, Forecasting and
Control. San Francisco, CA, USA: Holden-Day, 1976.
[37] A. Frank and A. Asuncion. (2010). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml