Bas¸ ar E, Guntekin B, Oniz A. Principles of oscillatory brain dynamics and a treatise
of recognition of faces and facial expressions. Prog Brain Res 2006];159:43–63,
http://dx.doi.org/10.1016/S0079-6123(06)59004-1.
Ben-Hur A, Elisseeff A, Guyon I. A stability based method for discovering structure
in clustered data. In: Pacific symposium on biocomputing, vol. 7; 2002]. p. 6–17.
Bhandari D, Murthy CA, Pal SK. Genetic algorithm with elitist model and
its convergence. Int J Pattern Recogn Artif Intell 1996];10:731–47,
http://dx.doi.org/10.1142/S0218001496000438.
Blankertz B. BCI competition III, data set II: P300 speller paradigm; 2004]
http://www.bbci.de/competition/iii/
Boudraa AO, Cexus JC, Benramdane S, Beghdadi A. Noise filtering using empirical
mode decomposition; 2007].
Cerutti S, Chiarenza G, Liberati D, Mascellani P, Pavesi G. A parametric method of
identification of single-trial event-related potentials in the brain. IEEE Trans
Biomed Eng 1988];35(9):701–11, http://dx.doi.org/10.1109/10.7271.
Curio G, Vaughan TM, Schalk G, Wolpaw JR, Schlögl A, Neuper C, Pfurtscheller
G, Hinterberger T, Schröder M, Birbaumer N, Blankertz B, Müller KR. The
BCI competition 2003: progress and perspectives in detection and discrimination
of EEG single trials. IEEE Trans Biomed Eng 2004];51(6):1044–51,
http://dx.doi.org/10.1109/TBME.2004.826692.
Demartines P, Herault J. Curvilinear component analysis: a self-organizing neural
network for nonlinear mapping of data sets. IEEE Trans Neural Netw
1997];8(1):148–54, http://dx.doi.org/10.1109/72.554199.
Drenhaus H, bein Graben P, Saddy D, Frisch S. Diagnosis and repair of negative
polarity constructions in the light of symbolic resonance analysis. Brain Lang
2006];96(3):255–68, http://dx.doi.org/10.1016/j.bandl.2005.05.001.
Dunn JC. Well-separated clusters and optimal fuzzy partitions. J Cybern
1974];4:95–104, http://dx.doi.org/10.1080/01969727408546059.
Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis
utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol
1988];70:510–23, http://dx.doi.org/10.1016/0013-4694(88)90149-6.
Flandrin P, Gonc¸ alves P, Rilling G. Detrending and denoising with empirical mode
decompositions. In: Proceedings of European signal processing conference;
2004].
Flandrin P. MATLAB implementation: empirical mode decomposition; 2007]
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
Frisch R. Correlation and scatter in statistical variables. Nordic StatJ 1929];1:36–102.
Haig AR, Gordon E, Rogers G, Anderson J. Classification of single-trial ERP
sub-types: application of globally optimal vector quantization using simulated
annealing. Electroencephalogr Clin Neurophysiol 1995];94:288–97,
http://dx.doi.org/10.1016/0013-4694(95)98480-V.
Hartigan JA, Wong MA. Algorithm as 136: a k-means clustering algorithm. J R Stat
Soc Ser C: Appl Stat 1992];28(1):100–8, http://dx.doi.org/10.2307/2346830.
Holland JH. Genetic algorithms. Sci Am 1992];267:66–72.
Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N, Tung CC, Liu HH.
The empirical mode decomposition and the Hilbert spectrum for nonlinear
and non-stationary time series analysis. Proc R Soc Lond A 1998];454:903–95,
http://dx.doi.org/10.1098/rspa.1998.0193.
Ihrke M, Schrobsdorff H, Herrmann JM. Denoising and averaging techniques for
electrophysiological data. In: Wennberg R, Velazquez JLP, editors. Coordinated
activity in the brain: measurements and relevance to brain function and
behaviour. Heidelberg: Springer; 2009].
Jansen BH, Nyberg HN, Zouridakis G. Selective averaging of evoked potentials using
trajectory-based clustering. Methods Inform Med 1994];33:49–51.
JongsmaMLA, Eichele T,VanRijnCM,CoenenAML,HugdahlK,NordbyH, QuirogaRQ.
Tracking pattern learning with single-trial event-related potentials. Clin Neurophysiol
2006];117:1957–73, http://dx.doi.org/10.1016/j.clinph.2006.05.012.
Kay S. Modern spectral estimation: theory and application. Englewood Cliffs:
Prentice-Hall; 1988].
Lange DH, Siegelmann HT, Pratt H, Inbar GF. Overcoming selective ensemble averaging:
unsupervised identification of event-related brain potentials. IEEE Trans
Biomed Eng 2000];47(6):822–6, http://dx.doi.org/10.1109/10.844236.
Laskaris N, Fotopoulos S, Papathanasopoulos P, Bezerianos A. Robust moving averages,
with Hopfield neural network implementation, for monitoring evoked
potential signals. Electroencephalogr Clin Neurophysiol 1997];104:151–6,
http://dx.doi.org/10.1016/S0168-5597(97)96681-8.
Lee T, Girolami M, Sejnowski TJ. Independent component analysis
using an extended infomax algorithm for mixed sub-Gaussian
and super-Gaussian sources. Neural Comput 1999];11(2):417–41,
http://dx.doi.org/10.1162/089976699300016719.
Maulik U, Bandyopadhyay S. Genetic algorithm-based clustering technique. Pattern
Recogn 2000];33:1455–65, http://dx.doi.org/10.1016/S0031-3203(99)00137-5.
Please cite this article in press as: Williams NJ, et al. Method for exploratory cluster analysis and visualisation of single-trial ERP
ensembles. J Neurosci Methods (2015), http://dx.doi.org/10.1016/j.jneumeth.2015.02.007
ARTICLE IN PRESS G Model
NSM-7149; No. of Pages12
12 N.J. Williams et al. / Journal of Neuroscience Methods xxx (2015) xxx–xxx
Mazaheri A, Jensen O. Posterior alpha activity is not phase-reset by visual
stimuli. Proc Natl Acad Sci U S A 2006];103(8):2948–52, http://dx.doi.org/
10.1073/pnas.0505785103.
Quiroga RQ, Garcia H. Single-trial event-related potentials with wavelet
denoising. Clin Neurophysiol 2003];114:376–90, http://dx.doi.org/10.1016/
S 1388-24 57(02)00365-6.
Rilling G, Flandrin P, Gonc¸ alves P. On empirical mode decomposition and its algorithms.
In: Proceedings of IEEE-EURASIP workshop on nonlinear signal and
image processing; 2003]., http://dx.doi.org/10.1109/10.7271.
Rubin DDBD, Baselli G, Inbar GF, Cerutti S. An adaptive neuro-fuzzy method
(ANFIS) for estimating single-trial movement-related potentials. Biol Cybern
2004];91:63–75, http://dx.doi.org/10.1007/s00422-004-0500-8.
Rumelhart DE, Zipser D. Feature discovery by competitive learning. Cogn Sci
1985];9:75–112, http://dx.doi.org/10.1016/S0364-0213(85)80010-0.
Saddy JD, Drenhaus H, Frisch S. Processing polarity items: contrastive
licensing costs, brain and language. Brain Lang 2004];90(1–3):493–502,
http://dx.doi.org/10.1016/S0093-934X(03)00470-X.
Salvador S, Chan P. Determining the number of clusters/segments in hierarchical
clustering/segmentation algorithms. In: 16th IEEE international conference on
tools with artificial intelligence, November; 2004].
Sammon JW Jr. A nonlinear mapping for data structure analysis. IEEE Trans Comput
1969];C-18(5):401–9, http://dx.doi.org/10.1109/T-C.1969.222678.
Spencer KM. Averaging, detection, and classification of single-trial ERPs. In: Handy
TC, editor. Event-related potentials: a methods handbook. Cambridge, MA: MIT
Press; 2005].
Tan P, Steinbach M, Kumar V. Introduction to data mining. Addison-Wesley;
2006].
Tass PA. Stochastic phase resetting of stimulus-locked responses of two
coupled oscillators: transient response clustering, synchronisation and
desynchronisation. Chaos 2003];13(1):364–76, http://dx.doi.org/10.1063/
1.1505813.
Thakor NV. Adaptive filtering of evoked potentials. IEEE Trans Biomed Eng
1987];34:6–12, http://dx.doi.org/10.1109/TBME.1987.326024.
Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data
set via the gap statistic. J R Stat Soc: Ser B: Stat Methodol 2001];63:411–23,
http://dx.doi.org/10.1111/1467-9868.00293.
Tseng SY, Chen RC, Chong FC, Kuo TS. Evaluation of parametric methods
in EEG signal analysis. Med Eng Phys 1995];17(1):71–8,
http://dx.doi.org/10.1016/1350-4533(95)90380-T.
Williams NJ, Nasuto SJ, Saddy JD. Evaluation of empirical mode decomposition for
event-related potential analysis. EURASIP JAdv Signal Process 2011];2011:1–11,
http://dx.doi.org/10.1155/2011/965237.
Zouridakis G, Jansen BH, Boutros NN. A fuzzy clustering approach to EP estimation.
IEEE Trans Biomed Eng 1997];44:673–80, http://dx.doi.org/10.1109/10.605424.