[1] Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G,
Vaughan TM. Brain-computer interfaces for communication
and control. Clin Neurophysiol. 2002;113:767–791.
[2] Mason SG, Birch GE. A general framework for braincomputer
interface design. IEEE Trans Neural Syst Rehabil
Eng. 2003;11:70–85.
[3] Alimardani M, Nishio S, Ishiguro H. Effect of biased feedback
on motor imagery learning in BCI-teleoperation system.
Front Syst Neurosci. 2014;8:52.
[4] Hwang HJ, Kim S, Choi S, Im CH. EEG-based braincomputer
interfaces (BCIs): a thorough literature survey.
Int J Hum Comput Interact. 2013;29:814–826.
[5] Chin ZY, Ang KK, Wang C, Guan C. Online performance
evaluation of motor imagery BCI with augmented-reality
virtual hand feedback. Conf Proc IEEE Eng Med Biol
Soc. 2010;3341–3344.
[6] Hwang HJ, Kwon K, Im CH. Neurofeedback-based motor
imagery training for brain-computer interface (BCI). J
Neurosci Methods. 2009;179:150–156.
[7] Kaiser V, Daly I, Pichiorri F, Mattia D, Müller-Putz GR,
Neuper C. On the relationship between electrical brain
responses to motor imagery and motor impairment in
stroke. Stroke. 2012;43:2735–2740.
[8] Prasad G, Herman P, Coyle D, McDonough S, Crosbie J.
Using motor imagery based brain-computer interface for
post-stroke rehabilitation. Conf Proc IEEE Eng Med Biol
Soc. 2009;258–262.
[9] Sitaram R, Caria A, Veit R, Gaber T, Rota G, Kuebler A,
Birbaumer N. FMRI brain-computer interface: a tool for
neuroscientific research and treatment. Comput Intell Neurosci.
2007;25487.
[10] Birbaumer N, Ramos Murguialday A, Weber C, Montoya
P. Neurofeedback and brain-computer interface clinical
applications. Int Rev Neurobiol. 2009;86:107–117.
[11] Ang KK, Guan C, Chua KSG, Ang BT, Kuah C, Wang
C, et al. Clinical study of neurorehabilitation in stroke
using EEG-based motor imagery brain-computer interface
with robotic feedback. Conf Proc IEEE Eng Med Biol
Soc. 2010;5549–5552.
[12] Ramos-Murguialday A, Schürholz M, Caggiano V,
Wildgruber M, Caria A, Hammer EM, Halder S, Birbaumer
N. Proprioceptive feedback and brain computer interface
(BCI) based neuroprostheses. PLoS One. 2012;7:e47048.
[13] Riccio A, Mattia D, Simione L, Olivetti M, Cincotti F.
Eye-gaze independent EEG-based brain-computer interfaces
for communication. J Neural Eng. 2012;9:045001.
[14] Russman BS, Kazi KH. Spinal epidural hematoma and the
Brown-Sequard syndrome. Neurology. 1971;21:1066–1068.
[15] Smith DL, Akhtar AJ, Garraway WM. Proprioception and
spatial neglect after stroke. Age Ageing. 1983;12:63–69.
[16] McCreadie KA, Coyle DH, Prasad G. Sensorimotor learning
with stereo auditory feedback for a brain-computer
interface. Med Biol Eng Comput. 2013;51:285–293.
[17] Higashi H, Rutkowski TM, Washizawa Y, Cichocki A,
Tanaka T. EEG auditory steady state responses classification
for the novel BCI. In: 2011 Annual International
Conference of the IEEE Engineering in Medicine and
Biology Society; 2011. p. 4576–4579.
[18] Nakamura T, Namba H, Matsumoto T. Classification of
auditory steady-state responses to speech data. In: 2013
6th International IEEE/EMBS Conference on Neural Engineering
(NER); 2013. p. 1025–1028.
[19] Schreuder M, Blankertz B, Tangermann M. A new auditory
multi-class brain-computer interface paradigm: spatial
hearing as an informative cue. PLoS One. 2010;5:e9813.
[20] Miranda ER. Brain-computer music interface for composition
and performance. Int J Disabil Human Dev.
2006;5:119–126.
[21] Münßinger JI, Halder S, Kleih SC, Furdea A, Raco V, Hösle
A, Kübler A. Brain painting: first evaluation of a new braincomputer
interface application with ALS-patients and healthy
volunteers. Front Neurosci. 2010;4:182.
[22] Miranda ER, Magee WL, Wilson JJ, Eaton J, Palaniappan
R. Brain-computer music interfacing (BCMI): from basic
research to the real world of special needs. Music Med.
2011;3:134–140.
[23] Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland
DJ, Birbaumer N, Kübler A. An auditory brain-computer
interface (BCI). J Neurosci Methods. 2008;167:
43–50.
[24] Huron DB. Sweet anticipation: music and the psychology of
expectation. Cambridge (MA): MIT Press; 2006. p. 462.
[25] Kellaris JJ, Mantel SP, Altsech MB. Decibels, disposition,
and duration: the impact of musical loudness and internal
states on time perceptions. Adv Consum Res. 1996;23:
498–503.
[26] Brodersen KH, Ong CS, Stephan KE, Buhmann JM. The
balanced accuracy and its posterior distribution. In: 20th
International Conference on Pattern Recognition; 2010. p.
3121–3124.
[27] Daly I, Hallowell J, Hwang F, Kirke A, Malik A, Roesch
E, Weaver J, Williams D, Miranda M, Nasuto S. Changes
in music tempo entrain movement related brain activity.
In: Proceedings of the EMBC; 2014.
[28] Hammer EM, Halder S, Blankertz B, Sannelli C,
Dickhaus T, Kleih S, Müller KR, Kübler A. Psychological
predictors of SMR-BCI performance. Biol Psychol.
2012;89:80–86.
[29] Kübler A, Neumann N, Kaiser J, Kotchoubey B,
Hinterberger T, Birbaumer NP. Brain-computer communication:
self-regulation of slow cortical potentials for
verbal communication. Arch Phys Med Rehabil. 2001;82:
1533–1539.
[30] Makeig S, Leslie G, Mullen T, Sarma D, Bigdely-Shamlo
N, Kothe C. First demonstration of a musical emotion
BCI. Affect Comput Int Interact Lect Notes Comp Sci.
2011;6975:487–496.
[31] Folgieri R, Zichella M. A BCI-based application in music.
Comput Entertain. 2012;10:1–10.
[32] Husain G, Thompson WF, Schellenberg EG. Effects of
musical tempo and mode on arousal, mood, and spatial
abilities. Music Percept. 2002;20:151–171.
[33] Daly I, Malik A, Hwang F, Roesch E, Weaver J, Kirke A,
Williams D, Miranda E, Nasuto SJ. Neural correlates of
emotional responses to music: an EEG study. Neurosci
Lett. 2014;573:52–57.