Aftanas LI, Reva NV, Savotina LN, Makhnev VP. Neurophysiological correlates
of induced discrete emotions in humans: an individually oriented analysis.
Neurosci Behav Physiol 2006;36(2):119–30, http://dx.doi.org/10.1007/
s11055-005-0170-6 http://www.ncbi.nlm.nih.gov/pubmed/16380825
Allefeld C, Müller M, Kurths J. Eigenvalue decomposition as a generalized
synchronization cluster analysis. Int J Bifurc Chaos 2007;17(10):3493–7,
http://dx.doi.org/10.1142/S0218127407019251.
Alpaydin E. Introduction to machine learning. Cambridge, MA: MIT Press; 2004
http://books.google.com/books?id=1k0-WroiqEC&pgis=1
Daly I, Malik A, Hwang F, Roesch E, Weaver J, Kirke A, et al. Neural correlates of
emotional responses to music: an EEG study. Neurosci Lett 2014;573:52–7,
http://dx.doi.org/10.1016/j.neulet.2014.05.003.
Daly I, Hallowell J, Hwang F, Kirke A, Malik A, Roesch E, et al. Changes in music tempo
entrain movement related brain activity. In: Proceedings of the EMBC; 2014.
David O, Friston K. A neural mass model for MEG/EEG: coupling and neuronal
dynamics. NeuroImage 2003;20:1743–55.
Dennis TA, Solomon B. Frontal EEG and emotion regulation: electro- cortical
activity in response to emotional film clips is associated with reduced mood
induction and attention interference effects. Biol Psychol 2010;85(3):456–64,
http://dx.doi.org/10.1016/j.biopsycho.2010.09.008.
Ellis DPW. Beat tracking by dynamic programming. J New Music Res
2007;36(1):51–60, http://dx.doi.org/10.1080/09298210701653344.
Friedrich EV, Scherer R, Neuper C. The effect of distinct mental strategies on
classification performance for brain–computer interfaces. Int J Psychophysiol
2012;84(1):86–94.
Grosse-Wentrup M, Buss M. Multiclass common spatial patterns and information
theoretic feature extraction. IEEE Trans Bio-Med Eng 2008;55(8):1991–2000,
http://dx.doi.org/10.1109/TBME.2008.921154 http://www.ncbi.nlm.nih.gov/
pubmed/18632362
Handy TC. Event-related potentials: a methods handbook. Cambridge, MA: MIT
Press; 2005 http://books.google.com/books?hl=en&lr=&id=OQyZEfgEzRUC&
pgis=1
Hardle W, Simar L. Applied multivariate statistical analysis. Berlin, Heidelberg:
Springer Berlin Heidelberg; 2007, http://dx.doi.org/10.1007/978-3-540-
72244-1 http://www.springerlink.com/index/
Hardoon DR, Szedmak S, Shawe-Taylor J. Canonical correlation analysis: an overview
with application to learning methods. Neural Comput 2004;16(12):2639–64,
http://dx.doi.org/10.1162/0899766042321814 http://www.ncbi.nlm.nih.gov/
pubmed/15516276
Hunter DB, Regan T. A note on the evaluation of the complementary
error function. Math Comput 1972;26(118):539, http://dx.doi.org/10.1090/
S0025-5718-1972-0303685-4.
Hwang H-J, Kim S, Choi S, Im C-H. EEG-based brain–computer interfaces
(BCIs): a thorough literature survey. Int J Hum–Comput Int 2013;29(12).,
http://dx.doi.org/10.1080/10447318.2013.780869, 130429122442009.
Kabuto M, Kageyama T, Nitta H. EEG power spectrum changes due to listening to
pleasant music and their relation to relaxation effects. Nihon eiseigaku zasshi
Jpn J Hyg 1993;48(4):807–18 http://www.ncbi.nlm.nih.gov/pubmed/8254987
Knapp TR. Canonical correlation analysis: a general parametric significance-testing
system. Psychol Bull 1978;85(2):410–6.
Koles ZJ, Lazar MS, Zhou SZ. Spatial patterns underlying population differences
in the background EEG. Brain Topogr 1990;2(4):275–84, http://dx.doi.org/
10.1007/BF01129656 http://link.springer.com/
Niedermeyer E, Silva FHLD. Electroencephalography: basic principles, clinical applications,
and related fields. Philadelphia, PA: Lippincott Williams & Wilkins;
2005.
Pfurtscheller G, Lopes da Silva F. Event-related EEG/MEG synchronization and
desynchronization: basic principles. Clin Neurophysiol 1999;110(11):1842–57,
http://dx.doi.org/10.1016/S1388-2457(99)00141-8.
Rahman M, Ma W, Tran D, Campbell J. A comprehensive survey of the feature
extraction methods in the EEG research. In: Xiang Y, Stojmenovic I, Apduhan
BO, Wang G, Nakano K, Zomaya A, editors. Algorithms and architectures for
parallel processing, vol. 7440 of Lecture notes in computer science. Berlin,
Heidelberg: Springer Berlin Heidelberg; 2012. p. 274–83, http://dx.doi.org/
10.1007/978-3-642-33065-0 http://www.springerlink.com/index/
Schaaff K. EEG-based emotion recognition. Universitat Karlsruhe; 2008
http://www.citeulike.org/user/maxweizhao/article/6542875
Schmidt B, Hanslmayr S. Resting frontal EEG alpha-asymmetry predicts the
evaluation of affective musical stimuli. Neurosci Lett 2009;460(3):237–40,
http://dx.doi.org/10.1016/j.neulet.2009.05.068.
Schmidt LA, Trainor LJ. Frontal brain electrical activity (EEG) distinguishes
valence and intensity of musical emotions. Cogn Emot 2001;15(4):487–500,
http://dx.doi.org/10.1080/02699930126048.
Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Braincomputer
interfaces for communication and control. Clin Neurophysiol
2002;113:767–91.