[1] P.N. Juslin, D. Västfjäll, Emotional responses to music: the need to
consider underlying mechanisms, Behav. Brain Sci. 31 (2008) 559–575,
http://dx.doi.org/10.1017/S0140525X08005293 (discussion 575–621).
[2] N. Gosselin, I. Peretz, D. Hasboun, M. Baulac, S. Samson, Impaired recognition
of musical emotions and facial expressions following anteromedial temporal
lobe excision, Cortex 47 (2011) 1116–1125, http://dx.doi.org/10.1016/j.
cortex.2011.05.012.
[3] L.A. Schmidt, L.J. Trainor, Frontal brain electrical activity (EEG) distinguishes
valence and intensity of musical emotions, Cogn. Emot. 15 (2001) 487–500,
http://dx.doi.org/10.1080/02699930126048.
[4] P.N. Juslin, P. Laukka, Expression, perception, and induction of musical emotions:
A review and a questionnaire study of everyday listening, J. New Music
Res. 33 (2004) 217–238.
[5] D. Sammler, M. Grigutsch, T. Fritz, S. Koelsch, Music and emotion:
electrophysiological correlates of the processing of pleasant and
unpleasant music, Psychophysiology 44 (2007) 293–304, http://dx.doi.
org/10.1111/j. 1469-8986.2007.00497.x
[6] T. Eerola, J.K. Vuoskoski, A comparison of the discrete and dimensional
models of emotion in music, Psychol. Music 39 (2010) 18–49,
http://dx.doi.org/10.1177/0305735610362821.
[7] I. Daly, S.J. Nasuto, K. Warwick, Brain computer interface control via
functional connectivity dynamics, Pattern Recognit. 45 (2012) 2123–2136,
http://dx.doi.org/10.1016/j.patcog.2011.04.034.
[8] T. Costa, E. Rognoni, D. Galati, EEG phase synchronization during emotional
response to positive and negative film stimuli, Neurosci. Lett. 406 (2006)
159–164, http://dx.doi.org/10.1016/j.neulet.2006.06.039.
[9] J. Bhattacharya, H. Petsche, E. Pereda, Long-range synchrony in the {gamma}
band: role in music perception, J. Neurosci. 21 (2001) 6329–6337.
[10] S. Khalfa, D. Schon, J-L. Anton, C. Liégeois-Chauvel, Brain regions involved in
the recognition of happiness and sadness in music, Brain Imaging 16 (2005)
1981–1984.
I. Daly et al. / Neuroscience Letters 573 (2014) 52–57 57
[11] I. Peretz, W. Aube, J.L. Armony, Toward a neurobiology of musical emotions,
in: Evol. Emot. Commun. From Sounds Nonhum. Mamm. to Speech Music Man,
Oxford University Press, 2013, pp. 277–299.
[12] R. Likert,Atechnique for the measurement of attitudes,Arch. Psychol. 22 (1932)
1–55.
[13] A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation
and blind deconvolution, Neural Comput. 7 (1995) 1129–1159.
[14] A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of singletrial
EEG dynamics including independent component analysis, J. Neurosci.
Methods (2004) 9–21.
[15] I. Daly, F. Pichiorri, J. Faller, V. Kaiser, A. Kreilinger, R. Scherer, G. Müller-Putz,
et al., What does clean EEG look like? Conf Proc IEEE Eng Med Biol Soc, 2012.
[16] B. Hjorth, An on-line transformation of EEG scalp potentials into orthogonal
source derivations, Electroencephalogr. Clin. Neurophysiol. 39 (1975)
526–530.
[17] R. Srinivasan, W.R. Winter, J. Ding, P.L. Nunez, EEG and MEG coherence:
measures of functional connectivity at distinct spatial scales
of neocortical dynamics, J. Neurosci. Methods 166 (2007) 41–52,
http://dx.doi.org/10.1016/j.jneumeth.2007.06.026.
[18] I.T. Jolliffe, A note on the use of principal components in regression, Appl. Stat.
31 (1982) 300, http://dx.doi.org/10.2307/2348005.
[19] U. Schimmack, A. Grob, Dimensional models of core affect: a quantitative comparison
by means of structural equation modeling, Eur. J. Pers. 14 (2000) 21.
[20] B. He, Y. Dai, L. Astolfi, F. Babiloni, H. Yuan, L. Yang, et al., eConnectome:
a MATLAB toolbox for mapping and imaging of brain
functional connectivity, J. Neurosci. Methods 195 (2011) 261–269,
http://dx.doi.org/10.1016/j.jneumeth.2010.11.015.
[21] K.R. Scherer, What are emotions? And how can they be measured? Soc. Sci. Inf.
44 (2005) 695–729, http://dx.doi.org/10.1177/0539018405058216.
[22] A. Keil, M.M. Müller, T. Gruber, C. Wienbruch, M. Stolarova, T. Elbert, et al.,
Effects of emotional arousal in the cerebral hemispheres: a study of oscillatory
brain activity and event-related potentials, Clin. Neurophysiol. 112 (2001)
2057–2068.
[23] L.I. Aftanas, N.V. Reva, L.N. Savotina, V.P. Makhnev, Neurophysiological
correlates of induced discrete emotions in humans: an individually
oriented analysis, Neurosci. Behav. Physiol. 36 (2006) 119–130,
http://dx.doi.org/10.1007/s11055-005-0170-6.
[24] B. Schmidt, S. Hanslmayr, Resting frontal EEG alpha-asymmetry predicts the
evaluation of affective musical stimuli, Neurosci. Lett. 460 (2009) 237–240,
http://dx.doi.org/10.1016/j.neulet.2009.05.068.
[25] L.I. Aftanas, S.A. Golocheikine, Human anterior and frontal midline theta and
lower alpha reflect emotionally positive state and internalized attention: highresolution
EEG investigation of meditation, Neurosci. Lett. 310 (2001) 57–60.
[26] M. Walpulski, EEG Representation of Emotion Evoking Pictures, 2008.
[27] R. Adolphs, H. Damasio, D. Tranel, A.R. Damasio, Cortical systems for the recognition
of emotion in facial expressions, J. Neurosci. 16 (1996) 7678–7687.