Allison BZ, McFarland DJ, Schalk G, Zheng SD, Moore Jackson M, Wolpaw JR. Towards
an independent SSVEP brain computer interface using steady state visual evoked
potentials. Clin Neurophysiol 2008;119(2):399–408.
Allison BZ, Brunner C, Kaiser V, Müller-Putz GR, Neuper C, Pfurtscheller G. Toward
a hybrid brain–computer interface based on imagined movement and visual
attention. J Neural Eng 2010a;7(2):026007–26016.
Allison BZ, Luth T, Valbuena D, Teymourian A, Volosyak I, Graser A. BCI demographics:
how many (and what kinds of) people can use an SSVEP BCI? IEEE Trans
Neural Syst Rehabil Eng 2010b;18(2):107–16.
Allison BZ, Wolpaw EW, Wolpaw JR. Brain–computer interface systems: progress
and prospects. Expert Rev Med Devices 2007;4(4):463–74.
Allison BZ, Brunner C, Altstätter C, Wagner IC, Grissmann S, Neuper C. A hybrid
ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control. J
Neurosci Methods 2012;209(2):299–307.
Allison BZ, Jin J, Zhang Y, Wang XY. Brain–computer interfaces (2014): a four-choice
hybrid P300/SSVEP BCI for improved accuracy. Brain–Computer Interfaces
2014;1(1):17–26.
Bakardjian H, Tanaka T, Cichocki A. An optimization of SSVEP brain responses
with application to eight-command brain–computer interface. Neurosci Lett
2010;469(1):34–8.
Bin G, Gao X, Yan Z, Hong B, Gao S. An online multi-channel SSVEP-based
brain–computer interface using a canonical correlation analysis method. J Neural
Eng 2009;6(4):046002.
Brunner C,Allison BZ,Altstaetter C, Neuper C.Acomparison ofthree brain–computer
interfaces based on event-related desynchronization, steady state visual
evoked potentials, or a hybrid approach using both signals. J Neural Eng
2011;8(2):025010.
Brunner C, Allison Bz, Krusienski DJ, Kaiser V, Müller-Putz GR, Pfurtscheller H,
et al. Improved signal processing approaches in an offline simulation of hybrid
brain–computer interface. J Neurosci Methods 2010;188(1):165–73.
Cheng M, Gao X, Gao S, Xu D. Design and implementation of a brain–computer
interface with high transfer rates. IEEE Trans Biomed Eng 2002;49(10):1181–6.
Daly I, Billinger M, Laparra-Hernández J, Aloise F, García ML, Faller J, et al. On the control
of brain–computer interface by users with cerebral palsy. Clin Neurophysiol
2013;124(9):1787–97.
Edlinger G, Holzner C, Guger C. A hybrid brain–computer interface for smart home
control. Lect Notes Comput Sci 2011;6762:417–26.
Farwell LA, Donchin E. Talking off the top of your head: toward a mental prosthesis
utilizing event-related brain potential. Electroencephalogr Clin Neurophysiol
1988;70(6):510–23.
Fazel-Rezai R, Allison BZ, Guger C, Sellers EW, Kleih SC, Kübler A. P300 brain
computer interface: current challenges and emerging trends. Front Neuroeng
2012;5:14.
Guger C, Daban S, Sellers E, Holzner C, Lrausz G, Carabalona R, et al. How many people
are able to control a P300-based brain–computer interface (BCI)? Neurosci Lett
2009;462(1):94–8.
Guo F, Hong B, Gao X, Gao S. A brain–computer interface using motion-onset visual
evoked potential. J Neural Eng 2008;5(4):477–85.
Hammer EM, Halder S, Blankertz B, Sannelli C, Dickhaus T, Kleih S, et al. Psycholigical
predictors of SMR-BCI performance. Biol Psychol 2012;89(1):80–6.
Hoffmann U, Vesin JM, Ebrahimi T, Diserens K. An efficient P300-based
brain–computer interface for disabled subjects. J Neurosci Methods
2008;167(1):115–25.
Hong B, Guo F, Liu T, Gao X, Gao S. N200-speller using motion-onset visual response.
Clin Neurophysiol 2009;120(9):1658–66.
Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang XY, et al. An adaptive P300-
based control system. J Neural Eng 2011a;8(3):036006.
Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang XY, et al. Optimized stimulus
presentation patterns for an event-related potential EEG-based brain–computer
interface. Med Biol Eng Comput 2011b;49(2):181–91.
Jin J, Allison BZ, Wang XY, Neuper C. A combined brain–computer interface based on
P300 potentials and motion-onset visual evoked potentials. J Neurosci Methods
2012a;205(2):265–76.
Jin J, Allison BZ, Kaufmann T, Kübler A, Zhang Y, Wang XY, et al. The changing
face of P300 BCIs: a comparison of stimulus changes in a P300 BCI
involving faces, emotion, and movement. PLOS ONE 2012b;7(11):0049688,
http://dx.doi.org/10.1371/journal.pone, e49688.
Lalor EC, Kelly SP, Finucane C, Burke R, Smith R, Reilly RB, et al. Steady-state
VEP-based brain–computer interface control in an immersive 3D gaming environment.
Eurasp J Appl Signal Process 2005;1:3156–64.
Li YQ, Long JY, Yu TY, Yu ZL, Wang CC, Zhang HL, et al. An EEG-based BCI system
for 2-D cursor control by combining Mu/beta rhythm and P300 potential. IEEE
Trans Biomed Eng 2010;57(10):2495–505.
Li YQ, Pan J, Wang F, Yu Z. A hybrid BCI system combining P300 and SSVEP and its
application to wheelchair control. IEEE Trans Biomed Eng 2013;60(11):3156–66.
Lin ZL, Zhang CS, Wu W, Gao XR. Frequency recognition based on canonical correlation
analysis for SSVEP-based BCIs. IEEE Trans Biomed Eng 2006;53(12):2610–4.
LuJ,McFarland DJ,Wolpaw JR.Adaptive Laplacianfiltering for sensorimotor rhythmbased
brain–computer interfaces. J Neural Eng 2013;10(1):016002.
Martinez P, Bakardjian H, Cichocki A. Fully online multicommand brain–computer
interface with visual neurofeedback using SSVEP paradigm. Comput Intell Neurosci
2007:13.
Müller-Putz GR, Scherer R, Brauneis C, Pfurtscheller G. Steady-state visual evoked
potential (SSVEP)-based communication: impact of harmonic frequency components.
J Neural Eng 2005;2(4):123–30.
Müller-Putz GR, Breitwieser C, Cincotti F, Leeb R, Schreuder M, Leotta F, et al. Tools
for brain–computer interaction: a general concept for a hybrid BCI. Front Neuroinform
2011;5(30):1–10.
Müller-Putz GR, Pfurtscheller G. Control of an electrical prosthesis with an SSVEPbased
BCI. IEEE Trans Neural Syst Rehabil Eng 2008;55(1):361–4.
Ortner R, Allison BZ, Korisek G, Gaggl H, Pfurtscheller G. An SSVEP BCI to control a
hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng
2011;19(1):1–5.
Panicker RC, Puthusserypady S, Sun Y. An asynchronous P300 BCI with SSVEP-based
control state detection. IEEE Trans Biomed Eng 2011;58(6):1781–8.
Pfurtscheller G, Neuper C. Motor imagery and direct brain–computer communication.
Proc IEEE 2001;89(7):1123–34.
Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis-Escalante T, Scherer R,
et al. The hybrid BCI. Front Neurosci 2010;4(42):1–11.
Pritach WS. Psychophysiology of P300. Psychol Bull 1981;89(3):506–40.
Regan D. Human brain electrophysiology. NY, USA: Elsevier; 1989.
Sellers EW, Donchin E. A P300-based brain–computer interface: initial tests by ALS
patients. Clin Neurophysiol 2006;117(3):538–48.
Trejo LJ, Rosipal R, Matthews B. Brain–computer interfaces for 1-D and 2-D cursor
control: designs using volitional control of the EEG spectrum or steady-state
visual evoked potentials. IEEE Trans Neural Syst Rehabil Eng 2006;14(2):
225–9.
Vidal JJ. Toward direct brain–computer communication. Annu Rev Biophys Bioeng
1973;2:157–80.
Vidaurre C, Blankertz B. Towards a cure for BCI illiteracy. Brain Topogr
2010;23(2):194–8.
Wang Y, Wang R, Gao X, Hong B, Gao S. A practical VEP-based brain–computer
interface. IEEE Trans Neural Syst Rehabil Eng 2006;14(2):234–9.
Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan T.
Brain–computer interfaces for communication and control. Clin Neurophysiol
2002;113(6):767–91.
Xu MP, Qi HZ,Wan BK, Yin T, Liu ZP, Ming D.Ahybrid BCI speller paradigm combining
P300 potential and the SSVEP blocking feature. J Neural Eng 2013;10(2):026001.
Yin E, Zhou ZT, Jiang J, Chen FL, Liu YD, Hu DW. A novel hybrid BCI speller based on
the incorporation of SSVEP into the P300 paradigm. J Neural Eng 2013;10(2):
026012.
Zhang Y, Zhao Q, Jin J,Wang X, Cichocki A. A novel BCI based on ERP components sensitive
to configural processing of human faces. J Neural Eng 2012;9(2):026018.