[1] Mason M F, Norton M I, Van Horn J D, Wegner D M,
Graffton S and Neil Macrae C 2007 Wandering minds: the
default network and stimulus-independent thought Science
315 393–5
[2] Kubler A, Kotchoubey B, Kaiser J, Wolpaw J ¨
and Birbaumer N 2001 Brain–computer communication:
unlocking the locked Psychol. Bull. 127 358–75
[3] Wolpaw J R, Birbaumer N, McFarland D J, Pfurtscheller G
and Vaughan T M 2002 Brain computer interfaces for
communication and control Clin. Neurophysiol. 113 767–91
[4] Allison B Z, Wolpaw E W and Wolpaw J R 2007
Brain–computer interface systems: progress and prospects
Expert Rev. Med. Devices 4 463–74
[5] Birbaumer N and Cohen L G 2007 Brain–computer interfaces:
communication and restoration of movement in paralysis J.
Physiol. 15 621–36
[6] Allison B Z, McFarland D J, Schalk G, Zheng S D,
Jackson M M and Wolpaw J R 2008 Brain computer
interface systems: progress and prospects Clin.
Neurophysiol. 119 399–408
[7] Mak J N and Wolpaw J R 2009 Clinical application of
brain–computer interface: current state and future prospects
IEEE Rev. Biomed. Eng. 2 187–99
[8] Ortner R, Allison B Z, Korisek G, Gaqql H
and Pfurtscheller G 2011 An SSVEP BCI to control a hand
orthosis for persons with tetraplegia IEEE Trans. Neural
Syst. Rehabil. Eng. 19 1–5
[9] Daly I, Billinger M, Laparra-Hernndex J, Aloise F,
Garca M L, Muller-Putz G R and Scherer R 2013 On the ¨
control of brain–computer interfaces by users with cerebral
palsy Clin. Neurophysiol. 124 1787–97
[10] Farwell L A and Donchin E 1988 Talking off the top of your
head: toward a mental prosthesis utilizing event-related
brain potentials Clin. Neurophysiol. 70 510–23
[11] Fazel-Rezai R 2007 Human error in P300 speller paradigm for
brain–computer interface 29th Conf. Proc. IEEE
Engineering in Medicine and Biology Society (Lyon,
France, 23–26 Aug.) pp 2516–9
[12] Mak J N, Arbel Y, Minett J W, McCane L M, Yuksel B,
Ryan D, Thompson D, Bianchi L and Erdogmus D 2011
Optimizing the P300-based brain–computer interface:
current status, limitations and future directions J. Neural
Eng. 8 025003
[13] Kleih S C, Riccio A, Mattia D, Schreuder M, Tangermann M,
Zickler C, Neuper C and Kubler A 2011 Motivation affects ¨
performance in a P300 brain computer interface Int. J.
Bioelectromagn. 13 46–47
[14] Johnson R Jr and Donchin E 1978 On how P300 amplitude
varies with utility of the eliciting stimuli Clin.
Neurophysiol. 44 424–37
[15] Polich J 2007 Updating P300: an integrative theory of P3a and
P3b Clin. Neurophysiol. 18 2128–48
[16] Mugler E, Bensch M, Halder S, Rosenstiel W, Bogdan M,
Birbaumer N and Kubler A 2008 Control of an internet ¨
browser using the P300 event-related potential Int. J.
Bioelectromagn. 10 56–63
[17] Munssinger J I, Halder S, Kleih S C, Furdea A, Raco V, ¨
Hoesle A and Kubler A 2010 Brain painting: first evaluation ¨
of a new brain–computer interface application with
ALS-patients and healthy volunteers Front. Neurosci. 4 182
[18] Aloise F, Schettini F, Arico P, Leotta F, Salinari S, Mattia D,
Babiloni F and Cincotti F 2011 P300-based brain–computer
interface for environmental control: an asynchronous
approach J. Neural Eng. 8 025025
[19] Xu N, Gao X R, Hong B, Miao X B, Gao S K and Yang F S
2004 BCI competition 2003-data set IIb: enhancing P300
wave detection using ICA-based subspace projections for
BCI applications IEEE Trans. Biomed. Eng. 51 1067–72
[20] Lotte F, Congedo M, Lecuyer A, Lamarche F and Arnaldi B
2007 A review of classification algorithms for EEG-based
brain–computer interfaces J. Neural Eng. 4 R1–13
[21] Hoffmann U, Vesin J M, Ebrahimi T and Diserens K 2008 An
empirical bayesian framework for brain computer interface
J. Neurosci. Methods 167 115–25
[22] Cichocki A, Washizawa N Y, Rutkowski T, Bakardjian H,
Phan A H, Choi S, Lee H, Zhao Q, Zhang L and Li Y Q
2008 Noninvasive BCIs: multiway signal-processing array
decompositions IEEE Comput. 41 34–42
[23] Blankertz B, Lemm S, Treder M, Haufe S and Muller K R
2011 Single-trial analysis and classification of ERP
components—a tutorial NeuroImage 56 814–25
[24] Zhang Y, Zhou G, Zhao Q, Jin J, Wang X and Andrzej C 2013
Spatial-temporal discriminant analysis for ERP-based
brain–computer interface IEEE Trans. Neural Syst. Rehabil.
Eng. 21 233–43
[25] Liu Y, Zhou Z T and Hu D W 2010 Gaze independent
brain–computer speller with convert visual search tasks
Clin. Neurophysiol. 112 1127–36
[26] Treder M S, Schmidt N M and Blankertz B 2011
Gaze-independent brain–computer interfaces based on
covert attention and feature attention J. Neural Eng.
8 066003
[27] Townsend G, LaPallo B K, Boulay C B, Krusienski D J,
Frye G E, Hauser C K, Schwartz N E,, Vaughan T M,
Wolpaw J R and Sellers E W 2010 A novel P300-based
brain–computer interface stimulus presentation paradigm:
moving beyond rows and columns Clin. Neurophysiol.
121 1109–20
[28] Jin J, Allison B Z, Sellers E W, Brunner C, Horki P, Wang X
and Neuper C 2011 Adaptive P300 based control system J.
Neural Eng. 8 036006
[29] Guo F, Hong B, Gao X and Gao S 2008 A brain–computer
interface using motion-onset visual evoked potential J.
Neural Eng. 5 011
[30] Liu T, Goldberg L, Gao S and Hong B 2010 An online
brain–computer interface using non-flashing visual evoked
potentials J. Neural Eng. 7 036003
[31] Hong B, Guo F, Liu T and Gao S 2009 N200-speller using
motion-onset visual response Clin. Neurophysiol.
120 1658–66
[32] Jin J, Allison B Z, Wang X and Neuper C 2012a A combined
brain–computer interface based on P300 potentials and
motion-onset visual evoked potentials J. Neurosci. Methods
205 265–76
[33] Kaufmann T, Schulz S M, Grunzinger C and K ¨ ubler A 2011 ¨
Flashing characters with famous faces improves ERP-based
brain–computer interface performance J. Neural Eng.
8 056016
[34] Kaufmann T, Schulz S M, Koblitz A, Renner G, Wessig C ¨
and Kubler A 2012 Face stimuli effectively prevent ¨
brain–computer interface inefficiency in patients with
neurodegenerative disease Clin. Neurophysiol.
124 893–900
[35] Zhang Y, Zhao Q, Jin J, Wang X and Cichocki A 2012 A novel
BCI based on ERP components sensitive to configural
processing of human faces J. Neural Eng. 9 026018
[36] Townsend G, Shanahan J, Ryan D B and Sellers E W 2012 A
general P300 brain–computer interface presentation
paradigm based on performance guided constraints
Neurosic. Lett. 531 63–68
[37] Frye G E, Hauser C K, Townsend G and Sellers E W 2011
Suppressing flashes of items surrounding targets during
calibration of a P300-based brain–computer
interface improves performance J. Neural Eng.
8 025024
[38] Jin J, Allison B Z, Kaufmann T, Kubler A, Zhang Y, ¨
Wang X Y and Cichocki A 2012 The changing face of P300
BCIs: a comparison of stimulus changes in a P300 BCI
involving faces, emotion, and movement PLoS ONE
7 e49688
[39] Krombholz A, Schaefer F and Boucsein W 2007 Modification
of N170 by different emotional expression of schematic
faces Biol. Psychol. 76 156–62
[40] Bediou B, Eimer M, D’Amato T, Hauk O and Calder A J 2009
In the eye of the beholder: individual differences in
reward-drive modulate early frontocentral ERPs to angry
faces Neuropsychologia 47 825–34
[41] Calvo M G, Marrero H and Beltran D 2013 When does the
brain distinguish between genuine and ambiguous smiles?
An ERP study Brain Cogn. 81 237–46
[42] Guger C, Daban S, Sellers E W, Holzner C, Krausz G,
Carabalona R, Gramatica F and Edlinger G 2009 How
many people are able to control a P300-based
brain–computer interface (BCI) Neurosci. Lett. 462 94–8
[43] Jin J, Allison B Z, Kaufmann T, Kubler A, Zhang Y, Wang X ¨
and Cichocki A 2012b The changing face of P300 BCIs: a
comparison of stimulus changes in a P300 BCI involving
faces, emotion, and movement PLoS One 7 e49688
[44] Jin J, Horki P, Brunner C, Wang X, Neuper C
and Pfurtscheller G 2010 A new P300 stimulus presentation
pattern for EEG-based spelling systems Biomed. Tech.
55 203–10
[45] Wolpaw J R, Birbaumer N, Pfurtscheller G and Vaughan T
2002 Brain–computer interfaces for communication and
control Clin. Neurophysiol. 113 767–91
[46] Curran T and Hancock J 2007 The Fn400 indexes
familiarity-based recognition of faces NeuroImage
36 464–71