Translational algorithms: the heart of a brain computer interfaceSingh, H. and Daly, I. (2015) Translational algorithms: the heart of a brain computer interface. In: Hassanien, A. E. and Azar, A. T. (eds.) Brain-computer interfaces: current trends and applications. Intelligent Systems Reference Library, 74. Springer International Publishing, London, pp. 97-121. ISBN 9783319109770 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1007/978-3-319-10978-7_4
Ang, K.K., Guan, C., Chua, K.S.G., et al.: Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. In: Conference of the IEEE Engineering in Medicine and Biology Society (2010)
Azar, A., Balas, V., Olariu, T.: Classification of EEG-based brain-computer interfaces. In: Iantovics, B., Kountchev, R. (eds.) Advanced Intelligent Computational Technologies and Decision Support Systems SE—9, Studies in Computational Intelligence, pp. 97–106. Springer, New York (2014)
Billinger, M., Daly, I., Kaiser, V., et al.: Is it significant? Guidelines for reporting BCI performance. In: Toward Practical BCIs: Bridging the Gap from Research to Real-World Applications (2012)
Birbaumer, N (2003) The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. Rehabilitation 11: pp. 120-123
Birbaumer, N (2006) Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43: pp. 517-532 CrossRef
Chen, X., Bin, G., Daly, I., et al.: Event-related desynchronization (ERD) in the alpha band during a hand mental rotation task. Neurosci. Lett. 541, 238–242 (2013)
Clercq, W, Vergult, A, Vanrumste, B (2006) Canonical correlation analysis applied to remove muscle artifacts from the electroencephalogram. IEEE Trans. Bio-med. Eng. 53: pp. 2583-2587 CrossRef
Coyle, S.M., Ward, T.E., Markham, C.M.: Brain-computer interface using a simplified functional near-infrared spectroscopy system. J. Neural. Eng. 4, 219–226 (2007). doi: 10.1088/1741-2560/4/3/007
Daly, I, Billinger, M, Laparra-Hernández, J (2013) On the control of brain-computer interfaces by users with cerebral palsy. Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. 124: pp. 1787-1797 CrossRef
Daly, I, Nasuto, SJ, Warwick, K (2011) Single tap identification for fast BCI control. Cogn. Neurodyn. 5: pp. 21-30 CrossRef
Daly, I, Nasuto, SJ, Warwick, K (2012) Brain computer interface control via functional connectivity dynamics. Pattern Recogn. 45: pp. 2123-2136 CrossRef
Daly, I, Nicolaou, N, Nasuto, SJ (2013) Automated artifact removal from the electroencephalogram: a comparative study. Clin. EEG Neurosci. 44: pp. 291-306 CrossRef
Donchin, E., Heffley, E., Hillyard, S.A., et al.: Cognition and event-related potentials II. The orienting reflex and P300. Ann. NY Acad. Sci. 425(1 Brain and Inf), 39–57 (1984)
Ebersole, JS, Pedley, TA (2003) Current practice of clinical electroencephalography, 3rd edn. Eur. J. Neurol. 10: pp. 604-605 CrossRef
Farwell, La, Donchin, E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70: pp. 510-523 CrossRef
Fazli, S, Mehnert, J, Steinbrink, J (2012) Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage 59: pp. 519-529 CrossRef
Friedrich, EVC, Scherer, R, Neuper, C (2012) The effect of distinct mental strategies on classification performance for brain-computer interfaces. Int. J. Psychophysiol. 84: pp. 86-94 CrossRef
Gan, G.: Data Clustering: Theory, Algorithms and Applications. SIAM, Philadelphia (2007)
Gibson, A, Dehghani, H (2009) Diffuse optical imaging. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 367: pp. 3055-3072 CrossRef
Goldberg, DE, Holland, JH (1988) Genetic algorithms and machine learning. Mach. Learn. 3: pp. 95-99 CrossRef
Graimann, B, Huggins, J, Levine, S (2002) Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin. Neurophysiol. 113: pp. 43-47 CrossRef
Guger, C., Harkam, W., Hertnaes, C., et al.: Prosthetic control by an EEG-based brain-computer interface (BCI). In: Proceedings of the AAATE Conference (1999)
Guyon, I (2003) An introduction to variable and feature selection. J. Mach. Learn. Res. 3: pp. 1157-1182
Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis (1999)
Handy, T.C.: Event-related Potentials: A Methods Handbook. MIT Press, Cambridge (2005)
Hill, NJ, Lal, TN, Schröder, M (2006) Classifying EEG and ECoG signals without subject training for fast BCI implementation: comparison of nonparalyzed and completely paralyzed subjects. IEEE Trans. Neural Syst. Rehabil. Eng. 14: pp. 183-186 CrossRef
Huggins, JE, Guger, C, Allison, B (2014) Workshops of the fifth international brain-computer interface meeting: defining the future. Brain-Comput. Interfaces 1: pp. 27-49 CrossRef
Hwang, H-J, Kim, S, Choi, S (2013) EEG-based brain-computer interfaces (BCIs): a thorough literature survey. Int. J. Human-Comput. Int. 29: pp. 130429122442009
Izzetoglu, M, Izzetoglu, K, Bunce, S (2005) Functional near-infrared neuroimaging. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 13: pp. 153-159 CrossRef
Jin, J, Sellers, EW, Zhang, Y (2013) Whether generic model works for rapid ERP-based BCI calibration. J. Neurosci. Methods 212: pp. 94-99 CrossRef
Kennedy, P, Andreasen, D, Ehirim, P (2004) Using human extra-cortical local field potentials to control a switch. J. Neural Eng. 1: pp. 72-77 CrossRef
Kohavi, R (1997) Wrappers for feature subset selection. Artif. Intell. 97: pp. 273-324 CrossRef
Koles, ZJ, Lazar, MS, Zhou, SZ (1990) Spatial patterns underlying population differences in the background EEG. Brain Topogr. 2: pp. 275-284 CrossRef
Kottaimalai, R., Rajasekaran, M.P., Selvam, V., et al.: EEG signal classification using principal component analysis with neural network in brain computer interface applications. In: 2013 IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology (ICECCN), pp. 227–231 (2013)
Krusienski, DJ, Sellers, EW, McFarland, DJ (2008) Toward enhanced P300 speller performance. J. Neurosci. Methods 167: pp. 15-21 CrossRef
Lal, T.N., Schr, M., Hill, N.J., et al.: A brain computer interface with online feedback based on magnetoencephalography. In: Proceedings of 22nd International Conference on Machine Learning (2005)
Leeb, R., Friedman, D., Müller-Putz, G.R., et al.: Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 79642 (2007)
Lotte, F., Congedo, M., Lécuyer, A., et al.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural. Eng. 4, R1–R13 (2007). doi: 10.1088/1741-2560/4/2/R01
Luck, S.J.: Ten simple rules for designing ERP experiments. In: Handy, T.C. (ed.) Event-Related Potentials—A Methods Handbook, pp. 17–32. MIT Press, Cambridge (2005)
Mappus IV, R.L., Venkatesh, G.R., Shastry, C., et al.: An fNIR based BMI for letter construction using continuous control. CHI ’09 Extended Abstracts on Human Factors in Computing Systems. ACM, New York, pp. 3571–3576 (2009)
Mason, SG, Birch, GE (2003) A general framework for brain-computer interface design. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 11: pp. 70-85 CrossRef
Mellinger, J, Schalk, G, Braun, C (2007) An MEG-based brain-computer interface (BCI). NeuroImage 36: pp. 581-593 CrossRef
Menon, V, Freeman, WJ, Cutillo, BA (1996) Spatio-temporal correlations in human gamma band electrocorticograms. Electroencephalogr. Clin. Neurophysiol. 98: pp. 89-102 CrossRef
Miranda, ER, Magee, WL, Wilson, JJ (2011) Brain-computer music interfacing (BCMI): from basic research to the real world of special needs. Music Med. 3: pp. 134-140 CrossRef
Müller-Putz, GR, Scherer, R, Brauneis, C (2005) Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components. J. Neural Eng. 2: pp. 123-130 CrossRef
Naito, M., Michioka, Y., Ozawa, K., et al.: A Communication Means for Totally Locked-in ALS Patients Based on Changes in Cerebral Blood Volume Measured with Near-Infrared Light. IEICE Trans Inf Syst. E90-D:1028–1037 (2007)
Nam, CS, Li, Y, Johnson, S (2010) Evaluation of P300-based brain-computer interface in real-world contexts. Int. J. Human-Comput. Interact. 26: pp. 621-637 CrossRef
Neuper, C, Scherer, R, Reiner, M (2005) Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 25: pp. 668-677 CrossRef
Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors (Basel) 12, 1211–79 (2012). doi: 10.3390/s12020121
Niedermeyer, E., Da Silva, F.H.L.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2005)
Nijholt, A., Desney, T.: BCI for Games: a State of the Art Survey. Lecture Notes in Computer Science. Springer, Berlin (2009)
O’Brien, JH (1982) P300 wave elicited by a stimulus-change paradigm in acutely prepared rats. Physiol. Behav. 28: pp. 711-713 CrossRef
Perelmouter, J, Birbaumer, N (2000) A binary spelling interface with random errors. IEEE Trans. Rehabil. Eng. 8: pp. 227-232 CrossRef
Perez, J.L.M., Cruz, A.B.: Linear discriminant analysis on brain computer interface. In: 2007 IEEE International Symposium on Intelligent Signal Processing, pp. 1–6 (2007)
Pfurtscheller, G, Lopes da Silva, FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110: pp. 1842-1857 CrossRef
Pfurtscheller, G, Müller-Putz, GR, Schlögl, A (2006) 15 years of BCI research at Graz University of Technology: current projects. IEEE Trans. Neural Syst. Rehabil. Eng. 14: pp. 205-210 CrossRef
Pfurtscheller, G., Allison, B.Z., Brunner, C., et al.: The hybrid BCI. Front. Neuroprosthetics 4(30) (2010)
Power, S.D., Falk, T.H., Chau. T.: Classification of prefrontal activity due to mental arithmetic and music imagery using hidden Markov models and frequency domain near-infrared spectroscopy. J. Neural. Eng. 7, 26002 (2010). doi: 10.1088/1741-2560/7/2/026002
Pregenzer, M, Pfurtscheller, G (1999) Frequency component selection for an EEG-based brain to computer interface. IEEE Trans. Rehabil. Eng. 7: pp. 413-419 CrossRef
Schalk, G, Leuthardt, EC (2011) Brain-computer interfaces using electrocorticographic signals. IEEE Rev. Biomed. Eng. 4: pp. 140-154 CrossRef
Schalk, G, McFarland, DJ, Hinterberger, T (2004) BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Bio-med. Eng. 51: pp. 1034-1043 CrossRef
Scherer, R, Graimann, B, Huggins, JE (2003) Frequency component selection for an ECoG-based brain-computer interface. Biomed. Tech. Biomed. Eng. 48: pp. 31-36 CrossRef
Schlogl, A., Kronegg, J., Huggins, J.E., et al.: Evaluation Criteria in BCI Research. MIT Press, Cambridge (2007)
Schomer, L., Lopes de Silva, F., (eds.): Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6th edn. Lippincott Williams & Wilkins, Philadelphia (2011)
Sellers, EW, Donchin, E (2006) A P300-based brain-computer interface: initial tests by ALS patients. Clin. Neurophysiol.: Off. J. Int. Fed. Clin. Neurophysiol. 117: pp. 538-548 CrossRef
Silvoni, S, Ramos-Murguialday, A, Cavinato, M (2011) Brain-computer interface in stroke: a review of progress. Clin. EEG Neurosci. 42: pp. 245-252 CrossRef
Singh, H, Qin, X, Hines, E (2007) Classification and feature extraction strategies for multi channel multi trial BCI data. Int. J. Bioelectromagn. 9: pp. 233-236
Singh, H.: Development of EEG Based BCI Approaches for Detection of Awareness in Human Disorders of Consciousness (2009)
Singh, H., Yang, J., Singh, S., et al.: Channel selection for multi channel multi trial invasive BCI data. In: Shama, K., Nayak, K.P., Bhat, S. (eds.) Electronic Design and Signal Processing, pp. 92–96 (2012)
Sitaram, R., Caria, A., Birbaumer, N.: Hemodynamic brain-computer interfaces for communication and rehabilitation. Neural. Netw. 22, 1320–1328 (2009). doi: 10.1016/j.neunet.2009.05.009
Sitaram, R., Caria, A., Veit, R., et al.: FMRI brain-computer interface: a tool for neuroscientific research and treatment. Comput. Intell. Neurosci. 25487 (2007)
Smith, L.I.: A Tutorial on Principal Components Analysis. Cornell University, USA (2002)
Sorger, B., Reithler, J., Dahmen, B., Goebel, R.: A real-time fMRI-based spelling device immediately enabling robust motor-independent communication. Curr. Biol. 22, 1333–1338 (2012). doi: 10.1016/j.cub.2012.05.022
Tangermann, M.W.: Feature selection for brain-computer interfaces. Naturwissenschaften (2007)
Teixeira, A.R., Tome, A.M., Lang, E.W., et al.: On the use of clustering and local singular spectrum analysis to remove ocular artifacts from electroencephalograms. In: Proceedings of International Joint Conference on Neural Networks, pp. 2514–2519 (2005)
Tudor, M., Tudor, L., Tudor, K.I.: [Hans Berger (1873–1941)—the history of electroencephalography]. Acta Med. Croat.: Cas. Hravatske Akademije Medicinskih Znanosti 59(4), 307–313 (2005)
Vaughan, TM, Heetderks, WJ, Trejo, LJ (2003) Brain-computer interface technology: a review of the Second International Meeting. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 11: pp. 94-109 CrossRef
Vaughan, TM, Wolpaw, JR (2006) The third international meeting on brain-computer interface technology: making a difference. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 14: pp. 126-127 CrossRef
Vaughan, TM, Wolpaw, JR (2011) Special issue containing contributions from the fourth international brain-computer interface meeting. J. Neural Eng. 8: pp. 020201 CrossRef
Wolf, M, Ferrari, M, Quaresima, V (2007) Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J. Biomed. Opt. 12: pp. 062104 CrossRef
Wolpaw, JR, Birbaumer, N, Heetderks, WJ (2000) Brain-computer interface technology: a review of the first international meeting. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 8: pp. 164-173 CrossRef
Wolpaw, JR, McFarland, DJ, Vaughan, TM (2003) The Wadsworth Center brain-computer interface (BCI) research and development program. IEEE Trans. Neural Syst. Rehabil. Eng.: Publ. IEEE Eng. Med. Biol. Soc. 11: pp. 204-207 CrossRef
Xu, P, Yang, P, Lei, X (2011) An enhanced probabilistic LDA for multi-class brain computer interface. PLoS ONE 6: pp. e14634 CrossRef
Yang, J, Singh, H, Hines, EL (2012) Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach. Artif. Intell. Med. 55: pp. 117-126 CrossRef
Yorn-Tov, E., Inbar, G.F.: Selection of relevant features for classification of movements from single movement-related potentials using a genetic algorithm. In: 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1364–1366 (2001) University Staff: Request a correction | Centaur Editors: Update this record |