The response of northern hemisphere extratropical climate and vegetation to orbitally-induced changes in insolation during the last interglaciationHarrison, S. P. ORCID: https://orcid.org/0000-0001-5687-1903, Kutzbach, J. E., Prentice, I. C., Behling, P. J. and Sykes, M. T. (1995) The response of northern hemisphere extratropical climate and vegetation to orbitally-induced changes in insolation during the last interglaciation. Quaternary Research, 43 (2). pp. 174-184. ISSN 0033-5894 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1006/qres.1995.1018 Abstract/SummaryThe last interglaciation (substage 5e) provides an opportunity to examine the effects of extreme orbital changes on regional climates. We have made two atmospheric general circulation model experiments: P+T+ approximated the northern hemisphere seasonality maximum near the beginning of 5e; P-T- approximated the minimum near the end of 5e. Simulated regional climate changes have been translated into biome changes using a physiologically based model of global vegetation types. Major climatic and vegetational changes were simulated for the northern hemisphere extratropics, due to radiational effects that were both amplified and modified by atmospheric circulation changes and sea-ice feedback. P+T+ showed mid-continental summers up to 8°C warmer than present. Mid-latitude winters were 2-4°C cooler than present but in the Arctic, summer warmth reduced sea-ice extent and thickness, producing winters 2-8°C warmer than present. The tundra and taiga biomes were displaced poleward, while warm-summer steppes expanded in the mid latitudes due to drought. P-T- showed summers up to 5°C cooler than present, especially in mid latitudes. Sea ice and snowpack were thicker and lasted longer; polar desert, tundra, and taiga biomes were displaced equatorward, while cool-summer steppes and semideserts expanded due to the cooling. A slight winter warming in mid latitudes, however, caused warm-temperate evergreen forests and scrub to expand poleward. Such qualitative contrasts in the direction of climate and vegetation change during 5e should be identifiable in the paleorecord
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |