Accessibility navigation


Speleothems as sensitive recorders of volcanic eruptions - the Bronze Age Minoan eruption recorded in a stalagmite from Turkey

Badertscher, S., Borsato, A., Frisia, S., Cheng, H., Edwards, R. L., Tuysuz, O. and Fleitmann, D. (2014) Speleothems as sensitive recorders of volcanic eruptions - the Bronze Age Minoan eruption recorded in a stalagmite from Turkey. Earth and Planetary Science Letters, 392. pp. 58-65. ISSN 0012-821X

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.epsl.2014.01.041

Abstract/Summary

Mounting evidence exists that variations in sulphur content in stalagmites are closely linked to changes in volcanic or anthropogenic atmospheric sulphur. The strong dependency of sulphur on soil pH and ecosystem storage, however, can result in a delay of several years to decades in the registration of volcanic eruptions and anthropogenic emissions by stalagmites. Here we present synchrotron-radiation based trace element analysis performed on a precisely-dated section of a stalagmite from Sofular Cave in Northern Turkey. As this section covers the time interval of the intensively studied Minoan volcanic eruption between 1600 and 1650 BC, we can test whether this vigorous eruption can be traced in a stalagmite. Of all measured trace elements, only bromine shows a clear short-lived peak at 1621±251621±25 BC, whereas sulphur and molybdenum show peaks later at 1617±251617±25 and 1589±251589±25 respectively. We suggest that all trace element peaks are related to the Minoan eruption, whereas the observed phasing of bromine, molybdenum and sulphur is related to differences in their retention rates in the soil above Sofular Cave. For the first time, we can show that bromine appears to be an ideal volcanic tracer in stalagmites, as it is a prominent volatile component in volcanic eruptions, can be easily leached in soils and rapidly transferred from the atmosphere through the soil and bedrock into the cave and stalagmite respectively. Highly resolved oxygen and carbon isotope profiles indicate that the Minoan eruption had no detectable climatic and environmental impact in Northern Turkey.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Archaeology, Geography and Environmental Science > Scientific Archaeology
Science > School of Archaeology, Geography and Environmental Science > Department of Archaeology
Interdisciplinary centres and themes > Centre for Past Climate Change
ID Code:40234
Publisher:Elsevier

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation