Accessibility navigation


Eemian and Holocene sea-surface conditions in the southern Black Sea: organic-walled dinoflagellate cyst record from core 22-GC3/3

Shumilovskikh, L. S., Marret, F., Fleitmann, D., Arz, H. W., Nowaczyk, N., Plessen, B. and Behling, H. (2013) Eemian and Holocene sea-surface conditions in the southern Black Sea: organic-walled dinoflagellate cyst record from core 22-GC3/3. Marine Micropaleontology, 101. pp. 146-160. ISSN 1872-6186

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1016/j.marmicro.2013.02.001

Abstract/Summary

In order to compare the sea-surface conditions in the Black Sea during the Holocene and Eemian, sapropelic parts of marine core 22-GC3 (42°13.53′N/36°29.55′E, 838 m water depth) were studied for organic-walled dinoflagellate cyst content. The record shows a change from freshwater/brackish assemblages (Pyxidinopsis psilata, Spiniferites cruciformis, and Caspidinium rugosum) to more marine assemblages (Lingulodinium machaerophorum and Spiniferites ramosus complex) during each interglacial, due to the inflow of saline Mediterranean water. The lacustrine–marine transitions in 22-GC3 occurred at ~ 8.3 cal kyr BP during the early Holocene and ~ 128 kyr BP during the early Eemian, slightly later compared to the onset of interglacial conditions on the adjacent land. Dinoflagellate cyst assemblages reveal higher sea-surface salinity (~ 28–30) (e.g. Spiniferites pachydermus, Bitectatodinium tepikiense, and Spiniferites mirabilis) around ~ 126.5–121 kyr BP in comparison to the Holocene (~ 15–20) as well as relatively high sea-surface temperature (e.g. Tuberculodinium vancampoae, S. pachydermus, and S. mirabilis) especially at ~ 127.6–125.3 kyr BP. Establishment of high sea-surface salinity during the Eemian correlates very well with reconstructed relatively high global sea-level and is explained as a combined effect of increased Mediterranean supply and high temperatures at the beginning of the last interglacial. The observed changes in the dinocyst record highlight the importance of nutrients for the composition of the Eemian and Holocene dinocyst assemblages.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Archaeology, Geography and Environmental Science > Scientific Archaeology
Science > School of Archaeology, Geography and Environmental Science > Department of Archaeology
Interdisciplinary centres and themes > Centre for Past Climate Change
ID Code:40302
Publisher:Elsevier

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation