Accessibility navigation


Technical note: how accurate can stalagmite formation temperatures be determined using vapour bubble radius measurements in fluid inclusions?

Spadin, F., Marti, D., Hidalgo-Staub, R., Ricka, J., Fleitmann, D. and Frenz, M. (2015) Technical note: how accurate can stalagmite formation temperatures be determined using vapour bubble radius measurements in fluid inclusions? Climate of the Past, 11 (6). pp. 905-913. ISSN 1814-9324

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

5MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.5194/cp-11-905-2015

Abstract/Summary

Stalagmites are natural archives containing detailed information on continental climate variability of the past. Microthermometric measurements of fluid inclusion homogenisation temperatures allow determination of stalagmite formation temperatures by measuring the radius of stable laser-induced vapour bubbles inside the inclusions. A reliable method for precisely measuring the radius of vapour bubbles is presented. The method is applied to stalagmite samples for which the formation temperature is known. An assessment of the bubble radius measurement accuracy and how this error influences the uncertainty in determining the formation temperature is provided. We demonstrate that the nominal homogenisation temperature of a single inclusion can be determined with an accuracy of ±0.25 °C, if the volume of the inclusion is larger than 105 μm3. With this method, we could measure in a proof-of-principle investigation that the formation temperature of 10–20 yr old inclusions in a stalagmite taken from the Milandre cave is 9.87 ± 0.80 °C, while the mean annual surface temperature, that in the case of the Milandre cave correlates well with the cave temperature, was 9.6 ± 0.15 °C, calculated from actual measurements at that time, showing a very good agreement. Formation temperatures of inclusions formed during the last 450 yr are found in a temperature range between 8.4 and 9.6 °C, which corresponds to the calculated average surface temperature. Paleotemperatures can thus be determined within ±1.0 °C.

Item Type:Article
Refereed:Yes
Divisions:Science > School of Archaeology, Geography and Environmental Science > Scientific Archaeology
Science > School of Archaeology, Geography and Environmental Science > Department of Geography and Environmental Science
Science > School of Archaeology, Geography and Environmental Science > Department of Archaeology
Interdisciplinary centres and themes > Centre for Past Climate Change
ID Code:40578
Publisher:Copernicus Publications on behalf of the European Geosciences Union

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation