Accessibility navigation


Automated artifact removal from the electroencephalogram; a comparative study

Daly, I., Nicolaou, N., Nasuto, S. and Warwick, K. (2013) Automated artifact removal from the electroencephalogram; a comparative study. Clinical EEG and Neuroscience, 44 (4). pp. 291-306. ISSN 1550-0594

Full text not archived in this repository.

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1177/1550059413476485

Abstract/Summary

Contamination of the electroencephalogram (EEG) by artifacts greatly reduces the quality of the recorded signals. There is a need for automated artifact removal methods. However, such methods are rarely evaluated against one another via rigorous criteria, with results often presented based upon visual inspection alone. This work presents a comparative study of automatic methods for removing blink, electrocardiographic, and electromyographic artifacts from the EEG. Three methods are considered; wavelet, blind source separation (BSS), and multivariate singular spectrum analysis (MSSA)-based correction. These are applied to data sets containing mixtures of artifacts. Metrics are devised to measure the performance of each method. The BSS method is seen to be the best approach for artifacts of high signal to noise ratio (SNR). By contrast, MSSA performs well at low SNRs but at the expense of a large number of false positive corrections.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences > Department of Bio-Engineering
ID Code:40606
Publisher:Sage

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation