Accessibility navigation


Matching roots to their environment

White, P. J., George, T. S., Gregory, P. J. ORCID: https://orcid.org/0000-0002-4118-4833, Bengough, A. G., Hallett, P. D. and McKenzie, B. M. (2013) Matching roots to their environment. Annals of Botany, 112 (2). pp. 207-222. ISSN 1095-8290

[img]
Preview
Text - Accepted Version
· Please see our End User Agreement before downloading.

516kB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1093/aob/mct123

Abstract/Summary

Background Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilisers. ● Scope This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future.

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Agriculture, Policy and Development > Department of Crop Science
ID Code:40748
Publisher:Oxford University Press

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation