1. Marta AE, Camadro EL, Diaz-Ricci JC, Castagnaro AP (2004) Breeding barriers between the cultivated strawberry, Fragaria x ananassa, and related wild germplasm. Euphytica 136: 139-150.
2. Pertot I, Zasso R, Amsalem L, Baldessari M, Angeli G, et al. (2008) Integrating biocontrol agents in strawberry powdery mildew control strategies in high tunnel growing systems. Crop Prot. 27: 622-631.
3. Aslaf B, Gadoury DM, Seem RC, Tronsmo A, Stensvand A (2012) Early-season cryptic development of powdery mildew (Podosphaera aphanis) in June bearing strawberries. Phytopathology 102: 7.
4. Maas JL (1998) Compendium of strawberry diseases. American Phytopathological Society. APS Press.
5. Amsalem L, Freeman S, Rav-David D, Nitzani Y, Sztejnberg A, et al. (2006) Effect of climatic factors on powdery mildew caused by Sphaerotheca macularis f. sp. fragariae on strawberry. Eur. J. Plant Pathol. 114: 283-292.
6. Braun U, Cook R, Inman A, Shin H, Belanger R, et al. (2002) The taxonomy of the powdery mildew fungi. The powdery mildews: a comprehensive treatise, 13-55.
7. Green J, Carver TL, Gurr S, Belanger R, Bushnell W, et al. (2002) The formation and function of infection and feeding structures. The powdery mildews: a comprehensive treatise, 66-82.
8. Jhooty J, McKeen W (1965) Studies on powdery mildew of strawberry caused by Sphaerotheca macularis. Phytopathology 55: 281-285.
9. Peries O (1962) Studies on strawberry mildew, caused by Sphaerotheca macularis (Wallr. ex Fries) Jaczewski. Ann. Appl. Biol. 50: 211-224.
10. Bent AF, Mackey D (2007) Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45: 399-436.
11. Gust AA, Brunner F, Nurnberger T (2010) Biotechnological concepts for improving plant innate immunity. Curr. Opin. Biotechnol. 21: 204-210.
12. Xu L, Zhu L, Tu L, Liu L, Yuan D, et al. (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry. J. Exp. Bot. 62: 5607-5621.
13, Kim KH, Kang YJ, Kim DH, Yoon MY, Moon, J-K, et al. (2011) RNA-Seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and-susceptible alleles. DNA Res. 18: 483-497.
14. Bagnaresi P, Biselli C, Orru L, Urso S, Crispino L, et al. (2012) Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice (Oryza sativa L.) genotypes. PloS ONE, 7: e51609.
15. Zhu Q-H, Stephen S, Kazan K, Jin G, Fan L, et al. (2013) Characterization of the defense transcriptome responsive to Fusarium oxysporum-infection in Arabidopsis using RNA-seq. Gene 512: 259-266.
16. Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, et al. (2010) The genome of woodland strawberry (Fragaria vesca). Nature Genet. 43: 109-116.
17. Slovin JP, Schmitt K, Folta KM (2009) An inbred line of the diploid strawberry Fragaria vesca f. semperflorens for genomic and molecular genetic studies in the Rosaceae. Plant Methods 5: 15.
18. Bindschedler LV, Palmblad M, Cramer R (2008) Hydroponic isotope labelling of entire plants (HILEP) for quantitative plant proteomics; an oxidative stress case study. Phytochemistry 69: 1962-1972.
19. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7: 562-578.
20. Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, et al. (2012) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol. 158: 590-600.
21. Kang C, Darwish O, Geretz A, Shahan R, Alkharouf N, et al. (2013) Genome-scale transcriptomic insights into early-stage fruit development in woodland strawberry Fragaria vesca. Plant Cell 25: 1960-1978.
22. Guidarelli M, Carbone F, Mourgues F, Perrotta G, Rosati, C, et al. (2011) Colletotrichum acutatum interactions with unripe and ripe strawberry fruits and differential responses at histological and transcriptional levels. Plant Pathol. 60: 685-697.
23. Schenk P, JinHsien C, ChinLin W (2009) Microarray analyses to study plant defence and rhizosphere-microbe interactions. CAB Reviews: Perspect. Agri. Vet. Sci. Nutr. Nat. Res. 4: 1-14.
24. Tan K, Ipcho S, Trengove R, Oliver R, Solomon P (2009) Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol. Plant Pathol. 10: 703-715.
25. Huckelhoven R, Panstruga R (2011) Cell biology of the plant–powdery mildew interaction. Curr. Opin. Plant Biol. 14: 738-746.
26. Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochromes P450 for engineering herbicide tolerance. Trends. Plant Sci. 5: 116-123.
27. Datta SK, Muthukrishnan S (2010) Pathogenesis-related proteins in plants. CRC press.
28. Roulin S, Xu P, Brown AH, Fincher GB (1997) Expression of specific (1→ 3)-β-glucanase genes in leaves of near-isogenic resistant and susceptible barley lines infected with the leaf scald fungus (Rhynchosporium secalis). Physiol. Mol. Plant Path. 50: 245-261.
29. Xu P, Wang J, Fincher G (1992) Evolution and differential expression of the (1→3)-β-glucan endohydrolase-encoding gene family in barley, Hordeum vulgare. Gene, 120: 157-165.
30. Molitor A, Zajic D, Voll LM, Pons-Kuhnemann J, Samans B, et al. (2011) Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew. Mol. Plant-Microbe Interact. 24: 1427-1439.
31. Polesani M, Bortesi L, Ferrarini A, Zamboni A, Fasoli M, et al. (2010) General and species-specific transcriptional responses to downy mildew infection in a susceptible (Vitis vinifera) and a resistant (V. riparia) grapevine species. BMC Genomics 11: 117.
32. Thordal-Christensen H, Gregersen PL, Collinge DB (2000) The barley/Blumeria (syn. Erysiphe) graminis interaction. In: Mechanisms of resistance to plant diseases. Springer, pp. 77-100.
33. Singh KB, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr. Opin. Plant Biol. 5: 430-436.
34. Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, et al. (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant. Mol. Biol. 65: 137-150.
35. Shiu S-H, Bleecker AB (2001) Plant receptor-like kinase gene family: diversity, function, and signaling. Sci. STKE 2001, re22.
36. Panstruga R, Parker JE, Schulze-Lefert P (2009) SnapShot: plant immune response pathways. Cell 136: 978.
37. Fritz-Laylin LK, Krishnamurthy N, Tor M, Sjolander KV, Jones JD (2005) Phylogenomic analysis of the receptor-like proteins of rice and Arabidopsis. Plant Physiol. 138: 611-623.
38. Yang X, Deng F, Ramonell KM (2012) Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity. Front. Biol. 7: 155-166.
39. Hepworth SR, Klenz JE, Haughn GW (2006) UFO in the Arabidopsis inflorescence apex is required for floral-meristem identity and bract suppression. Planta 223: 769-778.
40. Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16: 3181-3195.
41. Bai C, Sen P, Hofmann K, Ma L, Goebl M, et al. (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell 86: 263-274.
42. Gagne JM, Downes BP, Shiu S-H, Durski AM, Vierstra RD (2002) The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci.USA 99: 11519-11524.
43. Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, et al. (2007) F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol. 143: 1467-1483.
44. Woo HR, Chung KM, Park J-H, Oh SA, Ahn T, et al. (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13: 1779-1790.
45. Gou M, Shi Z, Zhu Y, Bao Z, Wang G, et al. (2012) The F‐box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. Plant J. 69: 411-420.
46. Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell, 18: 2082-2093.
47. McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol. 7: 212.
48. Liu J, Wang X, Mitchell T, Hu Y, Liu X, et al. (2010) Recent progress and understanding of the molecular mechanisms of the rice–Magnaporthe oryzae interaction. Mol. Plant Pathol. 11: 419-427.
49. Dry I, Feechan A, Anderson C, Jermakow A, Bouquet A, et al. (2010) Molecular strategies to enhance the genetic resistance of grapevines to powdery mildew. Aust. J. Grape Wine Res. 16: 94-105.
50. Dunwell JM, Gibbings JG, Mahmood T, Naqvi SMS (2008) Germin and germin-like proteins: Evolution, structure, and function. Crit. Rev. Plant Sci. 27: 342-375.
51. Zimmermann G, Baumlein H, Mock H-P, Himmelbach A, Schweizer P (2006) The multigene family encoding germin-like proteins of barley. Regulation and function in basal host resistance. Plant Physiol. 142: 181-192.
52. Dong X, Ji R, Guo X, Foster SJ, Chen H, et al. (2008) Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 228: 331-340.
53. Knecht K, Seyffarth M, Desel C, Thurau T, Sherameti I, et al. (2010) Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol. Plant-Microbe. Interact. 23: 446-457.
54. Fang X, Jost R, Finnegan PM, Barbetti MJ (2013) Comparative Proteome analysis of the strawberry-Fusarium oxysporum f. sp. fragariae pathosystem reveals early activation of defense responses as a crucial determinant of host resistance. J. Proteome Res. 12: 1772-1788.