Accessibility navigation


The identification of genes important in pseudomonas syringae pv. phaseolicola plant colonisation using in vitro screening of transposon libraries

Manoharan, B., Neale, H. C., Hancock, J. T., Jackson, R. W. and Arnold, D. L. (2015) The identification of genes important in pseudomonas syringae pv. phaseolicola plant colonisation using in vitro screening of transposon libraries. PLoS ONE, 10 (9). e0137355. ISSN 1932-6203

[img]
Preview
Text (Open Access) - Published Version
· Available under License Creative Commons Attribution.
· Please see our End User Agreement before downloading.

6MB

It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing.

To link to this item DOI: 10.1371/journal.pone.0137355

Abstract/Summary

The bacterial plant pathogen Pseudomonas syringae pv. phaseolicola (Pph) colonises the surface of common bean plants before moving into the interior of plant tissue, via wounds and stomata. In the intercellular spaces the pathogen proliferates in the apoplastic fluid and forms microcolonies (biofilms) around plant cells. If the pathogen can suppress the plant’s natural resistance response, it will cause halo blight disease. The process of resistance suppression is fairly well understood, but the mechanisms used by the pathogen in colonisation are less clear. We hypothesised that we could apply in vitro genetic screens to look for changes in motility, colony formation, and adhesion, which are proxies for infection, microcolony formation and cell adhesion. We made transposon (Tn) mutant libraries of Pph strains 1448A and 1302A and found 106/1920 mutants exhibited alterations in colony morphology, motility and biofilm formation. Identification of the insertion point of the Tn identified within the genome highlighted, as expected, a number of altered motility mutants bearing mutations in genes encoding various parts of the flagellum. Genes involved in nutrient biosynthesis, membrane associated proteins, and a number of conserved hypothetical protein (CHP) genes were also identified. A mutation of one CHP gene caused a positive increase in in planta bacterial growth. This rapid and inexpensive screening method allows the discovery of genes important for in vitro traits that can be correlated to roles in the plant interaction

Item Type:Article
Refereed:Yes
Divisions:Life Sciences > School of Biological Sciences > Biomedical Sciences
Life Sciences > School of Biological Sciences > Ecology and Evolutionary Biology
ID Code:42119
Additional Information:The full text of this article is freely available via PMC using the link supplied in Related URLs
Publisher:Public Library of Science

Downloads

Downloads per month over past year

University Staff: Request a correction | Centaur Editors: Update this record

Page navigation