Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperaturesCarter, D. O. and Tibbett, M. ORCID: https://orcid.org/0000-0003-0143-2190 (2006) Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biology & Biochemistry, 38 (5). pp. 1139-1145. ISSN 0038-0717 Full text not archived in this repository. It is advisable to refer to the publisher's version if you intend to cite from this work. See Guidance on citing. To link to this item DOI: 10.1016/j.soilbio.2005.09.014 Abstract/SummaryA laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days. Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution, microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2 evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001) was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2– 12 °C)>Q10(12–22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2–12 °C)<Q10(12– 22 °C)) in the control samples. Metabolic quotient and the positive relationship between skeletal muscle tissue mass loss and cumulative CO2 evolution suggest that tissue decomposition was most efficient at 2 °C. These phenomena may be due to lower microbial catabolic requirements at lower temperature.
Altmetric Deposit Details University Staff: Request a correction | Centaur Editors: Update this record |